## LECTURE 17

- Readings: Start Section 5.2


## Lecture outline

- Review of the Bernoulli process
- Definition of the Poisson process
- Basic properties of the Poisson process
- Distribution of the number of arrivals
- Distribution of the interarrival time
- Distribution of the $k^{\text {th }}$ arrival time


## The Bernoulli Process: Review



- Discrete time; success probability in each slot $=p$.
- PMF of number of arrivals in $n$ time slots: Binomial
- PMF of interarrival time: Geometric
- PMF of time to $k^{\text {th }}$ arrival: Pascal
- Memorylessness
- What about continuous arrival times? Example: arrival to a bank.


## The Poisson Process: Definition



- Let $\mathbf{P}(k, \tau)=$ Probability of $k$ arrivals in an interval of duration $\tau$.
- Assumptions:
- Number of arrivals in disjoint time intervals are independent.
- For VERY small $\delta$, we have:

$$
\mathbf{P}(k, \delta) \approx \begin{cases}1-\lambda \delta & \text { if } k=0 \\ \lambda \delta & \text { if } k=1 \\ 0 & \text { if } k>0\end{cases}
$$

- $\lambda=$ "arrival rate" of the process.


## From Bernoulli to Poisson (1)



- Bernoulli: Arrival prob. in each time slot $=p$
- Poisson: Arrival probability in each $\delta$-interval $=\lambda \delta$
- Let $n=t / \delta$ and $p=\lambda \delta$ :

Number of arrivals
in a $t$-interval
Number of successes in $n$ time slots
(Binomial)

## From Bernoulli to Poisson (2)



- Number of arrivals in a $t$-interval as $n \rightarrow \infty=$

$$
\begin{aligned}
& \binom{n}{k} p^{k}(1-p)^{n-k}=\binom{n}{k}\left(\frac{\lambda t}{n}\right)^{k}\left(1-\frac{\lambda t}{n}\right)^{n-k} \\
& \quad=\frac{n!}{\underbrace{n-k)!n^{k}}_{\downarrow}} \frac{(\lambda t)^{k}}{k!} \underbrace{\left(1-\frac{\lambda t}{n}\right)^{n}}_{\downarrow} \underbrace{\left(1-\frac{\lambda t}{n}\right)^{-k}}_{\downarrow} \quad \text { (reorder terms) } \\
& 1
\end{aligned}
$$

$$
=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t}
$$

(Poisson)

## PMF of Number of Arrivals



- $N$ : number of arrivals in a $\tau$-interval, thus:
- $\mathbf{P}(N=k)=\mathbf{P}(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}$
(Poisson)
- Mean: $\mathbf{E}[N]=\lambda \tau$
- Variance: $\operatorname{Var}(N)=\lambda \tau$
- Transform: $M_{N}(s)=e^{\lambda \tau\left(e^{s}-1\right)}$


## Email Example

- You get email according to a Poisson process, at a rate of $\lambda=0.4$ messages per hour. You check your email every thirty minutes.
- Prob. of no new messages $=\frac{(.2)^{0} e^{-.2}}{0!}=e^{-.2}$
- Prob. of one new message $=\frac{(.2)^{1} e^{-.2}}{1!}=.2 e^{-.2}$


## Interarrival Time



- $Y_{1}$ : time of the $1^{\text {st }}$ arrival.
- "First order" interarrival time:

$$
f_{Y_{1}}(y)=\lambda e^{-\lambda y}, \quad y \geq 0
$$

(Exponential)

- Why:

$$
\mathbf{P}\left(Y_{1} \leq y\right)=1-\mathbf{P}(0, y)=1-e^{-\lambda y}
$$

## Interarrival Time



- Fresh Start Property: The time of the next arrival is independent from the past.
- Memoryless property: Suppose we observe the process for $T$ seconds and no success occurred. Then the density of the remaining time for arrival is exponential.
- Email Example: You start checking your email. How long will you wait, in average, until you receive your next email? $\mathbf{E}\left[Y_{1}\right]=\frac{1}{\lambda}=2.5$ hours


## Time of $k^{\text {th }}$ Arrival



- $Y_{k}$ : time of the $k^{\text {th }}$ arrival.
- $T_{k}=Y_{k}-Y_{k-1} k=2,3, \ldots$ : kth interarrival time
- It follows that:

$$
Y_{k}=T_{1}+T_{2}+\ldots T_{k}
$$

## Time of $k^{\text {th }}$ Arrival



- $Y_{k}$ : time of the $k^{\text {th }}$ arrival.
- $f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0$
(Erlang)
"of order $k$ "



## Bernoulli vs. Poisson



|  | Bernoulli | Poisson |
| :---: | :---: | :---: |
| Times of Arrival | Discrete | Continuous |
| Arrival Rate | $p /$ per trial | $\lambda /$ unit time |
| PMF of Number of Arrivals | Binomial | Poisson |
| PMF of Interarrival Time | Geometric | Exponential |
| PMF of $k^{\text {th }}$ Arrival Time | Pascal | Erlang |

