LECTURE 19

• Readings: Finish Section 5.2

Lecture outline

- Markov Processes I
 - Checkout counter example.
 - Markov process: definition.
 - n -step transition probabilities.
 - Classification of states.

Example: Checkout Counter

- Discrete time $n = 0, 1, \cdots$
- Customer arrivals: Bernoulli(*p*)

– Geometric interarrival times.

- Customer service times: Geometric(q)
- "State" X_n : number of customers at time n .

Finite State Markov Models

- X_n : state after n transitions
 - Belongs to a finite set, e.g. $\{1, \cdots, m\}$
 - X_0 is either given or random.

• Markov Property / Assumption:

- Given the current state, the past does not matter.

$$p_{ij} = P(X_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)$$

= $P(X_{n+1} = j | X_n = i)$

- Modeling steps:
 - Identify the possible states.
 - Mark the possible transitions.
 - Record the transition probabilities.

$n\operatorname{-step}$ Transition Probabilities

• State occupancy probabilities, given initial state i:

$$r_{ij}(n) = \mathbf{P}(X_n = j | X_0 = i)$$

• Key recursion:

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$$

• Random initial state: $P(X_n = j) = \sum_{i=1}^{m} P(X_0 = i)r_{ij}(n)$

Example

	n = 0	n = 1	n = 2	n = 2563	n = 2564
$r_{11}(n)$	1	0.5	0.35		
$r_{12}(n)$	0	0.5	0.65		

Generic Question

• Does $r_{ij}(n)$ converge to something?

n odd: $r_{22}(n) = 0$ n even: $r_{22}(n) = 1$

• Does the limit depend on the initial state?

 $r_{21}(n) = r_{21}(n-1) + p_{21}r_{22}(n-1)$ = $r_{21}(n-1) + 0.3(0.4)^{n-1}$ = $0.3(1+0.4+\dots+0.4^{n-1}) = 0.3\frac{1-0.4^n}{1-0.4}$ = 0.5

Recurrent and Transient States

- State *i* is **recurrent** if:
 - Starting from i, and from wherever you can go, there is a way of returning to i.

- If not recurrent, a state is called **transient**.
 - If i is transient then $\operatorname{P}(X_n=i) o 0$ as $n o \infty$.
 - State i is visited only a finite number of times.

• Recurrent Class:

 Collection of recurrent states that "communicate" to each other, and to no other state.

Periodic States

- The states in a recurrent class are **periodic** if:
 - They can be grouped into d > 1 groups so that all transitions from one group lead to the next group.

• In this case, $r_{ii}(n)$ cannot converge.