LECTURE 21

- Readings: Section 6.4

Lecture outline

- Markov Processes - III
- Review of steady-state behavior
- Queuing applications
- Calculating absorption probabilities
- Calculating expected time to absorption

Review

- Assume a single class of recurrent states, aperiodic. Then,

$$
\lim _{n \rightarrow \infty} r_{i j}(n)=\pi_{j}
$$

where π_{j} does not depend on the initial conditions

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{n}=j \mid X_{0}\right)=\pi_{j}
$$

- π_{1}, \cdots, π_{m} can be found as the unique solution of the balance equations:

$$
\pi_{j}=\sum_{k=1}^{m} \pi_{k} p_{k j}
$$

together with

$$
\sum_{k=1}^{m} \pi_{j}=1
$$

Birth-Death Process

- General case:

- Locally, we have:

- Balance equations: $\pi_{i} p_{i}=\pi_{i+1} q_{i+1}$
- Why? (More powerful, e.g. queues, etc.)

M/M/1 Queue (1)

- Poisson arrivals with rate λ
- Exponential service time with rate μ
- $m=1$ server
- Maximum capacity of the system $=N$
- Discrete time intervals of (small) length δ :

- Balance equations: $\quad \lambda \pi_{i-1}=\mu \pi_{i} \quad i \leq N$
- Identical solution to the random walk problem.

M/M/1 Queue (2)

- Define: $\quad \rho=\frac{\lambda}{\mu}$
- Then:

$$
\begin{aligned}
& \pi_{i+1}=\pi_{i} \frac{\lambda}{\mu}=\pi_{i} \rho \\
& \pi_{i}=\pi_{0} \rho^{i}, \quad i=0,1, \cdots, m
\end{aligned}
$$

- To get π_{0}, use: $\sum_{j} \pi_{j}=1$

$$
\pi_{0}=\frac{1}{1+\rho+\cdots+\rho^{m}}=\frac{1-\rho}{1-\rho^{m+1}}
$$

- Consider 2 cases!

The Phone Company Problem (1)

- Poisson arrivals (calls) with rate λ
- Exponential service time (call duration), rate μ
- $m=N$ servers (number of lines)
- Maximum capacity of the system $=N$
- Discrete time intervals of (small) length δ :

- Balance equations: $\lambda \pi_{i-1}=i \mu \pi_{i}$
- Solve to get:

$$
\pi_{i}=\pi_{0} \frac{\lambda^{i}}{\mu^{i} i!}
$$

$$
\pi_{0}=1 / \sum_{i=0}^{N} \frac{\lambda^{i}}{\mu^{i} i!}
$$

The Phone Company Problem (2)

- Balance equations: $\lambda \pi_{i-1}=i \mu \pi_{i}$
- Solution:

$$
\pi_{i}=\pi_{0} \frac{\lambda^{i}}{\mu^{i} i!} \quad \pi_{0}=1 / \sum_{i=0}^{N} \frac{\lambda^{i}}{\mu^{i} i!}
$$

- Consider the limiting behavior as $N \rightarrow \infty$.

$$
\pi_{0}=\lim _{N \rightarrow \infty} 1 / \sum_{i=0}^{N} \frac{\lambda^{i}}{\mu^{i} i!}=e^{-\rho}
$$

- Therefore: $\pi_{i}=e^{-\rho} \frac{\lambda^{i}}{\mu^{i} i!}=e^{-\rho} \frac{\rho^{i}}{i!}$

M/M/m Queue

- Poisson arrivals with rate λ
- Exponential service time with rate μ
- m servers
- Maximum capacity of the system $=N$
- Discrete time intervals of (small) length δ :

- Balance equations:

$$
\begin{aligned}
\lambda \pi_{i-1} & =i \mu \pi_{i} \quad i \leq m \\
\lambda \pi_{i-1} & =m \mu \pi_{i} \quad i>m
\end{aligned}
$$

Gambler's Ruin (1)

- Each round, Charles Barkley wins 1 thousand dollars with probability p and looses 1 thousand dollars with probability $1-p$
- Casino capital is equal to m
- He claims he does not have a gambling problem!

- Both 0 and m are absorbing!

Calculating Absorption Probabilities

- Each state is either transient or absorbing
- Let s be one absorbing state
- Definition: Let a_{i} be the probability that the state will eventually end up in s given that the chain starts in state i
- For $i=s, a_{i}=1$
- For $i=$ other absorbing state, $a_{i}=0$
- For all other $i: \quad a_{i}=\sum_{j} p_{i j} a_{j}$

Gambler's Ruin (2)

$$
\begin{aligned}
& a_{0}=0 \\
& a_{m}=1 \\
& a_{i}=(1-p) a_{i-1}+p a_{i} \\
& \rho=\frac{1-p}{p}
\end{aligned}
$$

Expected Time to Absorption

- What is the expected number of transitions μ_{i} until the process reaches the absorbing state, given that the initial state is i ?
- $\mu_{i}=0$ for $i=4$
- For all other $i: \mu_{i}=1+\sum_{j} p_{i j} \mu_{j}$

