LECTURE 22

• Readings: Section 7.4

Lecture outline

- The Central Limit Theorem:
 - Introduction
 - Formulation and interpretation
 - Pollster's problem
 - Usefulness

Introduction

- X_1, \dots, X_n i.i.d. finite variance σ^2
- Look at three variants of their sum:
- $S_n = X_1 + \dots + X_n$ variance $n\sigma^2$

•
$$M_n = \frac{S_n}{n}$$
 variance σ^2/n

converges "in probability" to E[X] (WLLN)

•
$$\frac{S_n}{\sqrt{n}}$$
 constant variance σ^2

- Asymptotic shape?

Convergence of the Sample Mean

 X_1, \cdots, X_n i.i.d., (finite mean μ and variance σ^2)

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

- Mean: $E[M_n] = \mu$ Variance: $Var(M_n) = \frac{\sigma^2}{n}$
- n
- Chebyshev: $\mathbf{P}(|M_n \mathbf{E}[M_n]| \ge \epsilon) \le \frac{\operatorname{Var}(M_n)}{2}$

• Limit:

$$\mathbf{P}(|M_n - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$

The Central Limit Theorem

- "Standardized" $S_n = X_1 + \dots + X_n$: $Z_n = \frac{S_n - \mathbf{E}[S_n]}{\sigma_{S_n}} = \frac{S_n - n\mathbf{E}[X]}{\sqrt{n}\sigma}$
 - zero mean
 - unit variance
- Let Z be a standard normal r.v. (zero mean, unit variance)
- **Theorem**: For every c: $P(Z_n \leq c) \rightarrow P(Z \leq c)$
- $\mathbf{P}(Z \leq c)$ is the standard normal CDF $\Phi(c)$, available from the normal tables.

What exactly does it say?

- CDF of Z_n converges to normal CDF
 - Not a statement about convergence of PDFs or PMFs.

• Normal Approximation:

- Treat Z_n as if normal – Also treat S_n as if normal
- Can we use it when n is "moderate" ?
- Yes, but no nice theorems in this effect
- Symmetry helps a lot

The Pollster's Problem

- f : fraction of population that do ".....".

• i^{th} person polled: $X_i = \begin{cases} 1 & \text{If "Yes".} \\ 0 & \text{If "No".} \end{cases}$ • $M_n = \frac{X_1 + \dots + X_n}{n}$: fraction of "Yes" in our sample.

- Suppose we want: $P(|M_n f| \ge .01) \le .05$
- Event of interest: $|M_n f| \ge .01$

$$\left|\frac{X_1 + \dots + X_n - nf}{n}\right| \ge .01$$
$$\left|\frac{X_1 + \dots + X_n - nf}{\sqrt{n\sigma}}\right| \ge \frac{.01\sqrt{n}}{\sigma}$$

 $\mathbf{P}(|M_n - f| \ge .01) \approx \mathbf{P}(|Z| > 0.01\sqrt{n}/\sigma)$ $< P(|Z| > 0.02\sqrt{n})$

The Pollster's Problem

• we want: $P(|M_n - f| \ge .01) \le .05$

$$\mathbf{P}(|M_n - f| \ge .01) \approx \mathbf{P}(|Z| \ge 0.02\sqrt{n})$$

 $= 2 - 2 \mathbf{P}(Z \le 0.02 \sqrt{n}) \le .05$

- From Table: $n \ge 9604$
- Compare to $n \ge 50,000$ that we derived using Chebychev's inequality

Usefulness of the CLT

- Only means and variances matter.
- Much more accurate than Chebyshev's inequality
- Useful computational shortcut, even if we have a formula for the distribution of S_n
- Justification of models involving normal r.v.'s
 - Noise in electrical components
 - Motion of a particle suspended in a fluid (Brownian motion)