further reading

This appendix presents several suggestions for further reading, including a few detailed references. Only a few works, aill of relatively generat interest, are listed. Unless stated otherwise, the books below are at a level which should be accessible to the reader of this text. No attempt has been made to indicate the extensive literature pertaining to particular fields of application.

References are listed by author and date, followed by a brief description. Complete titles are tabulated at the end of this appendix. For brevity, the present volume is referred to as FAPT in the annotations.

I Some Relevant Philosophy and the History of Probability Theory

david (1962) Engaging history of some of the carliest developments in probability theory. Attention is also given to the colorful personalities involved.
kyburg and smokler (1963) Essays by Borel, de Finetti, Kinoopman, Ramsey, Savage, and Venn on a matter of significance in applied probability theory, the topic of subjective probability.
laplace (1825) Interesting discussions of philosophical issues related to probability theory and its applications to real world issues.
rom UnNER (1865) The classic reference for the early history of probability theory.

2 Introductory Probability Theory and Its Applicalions

fellen (1957) Thorough development of the diserete ease with a vast supply of interesting topics and applications. Contains a large body of fundamental material on combinatorial analysis and the use of transforms in the study of discrete renewal processes which is not included in FAPT.
Fisz (1963) Large, scholarly, and relatively complete text treating prohability theory and classical mathematical statistics. Tightly written. A very desirable reference work.
anevenio (1902) Respected text with much coverage common to FAPT, but at a more advanced mathematical level. Includes a brief introduction to mathematical statistics.
kolmogorov (1933) A short, original, and definitive work which established the axiomatic foundation of modern mathematical probability theory. Every student of applied probability theory will profit from spending at least several hours with this exceptional document. Although many seetions are presented at an advanced level, the reader will rapidly achieve some understanding of the nature of those topics which are required for a rigorous theoretienl foundation but neglected in a volume such as FAPT. As one significant example, he will tearn that our third axion of probability theory (known formally as the axiom of finite additivity) must be replaced by another axiom (specifying countable additivity) in order to deal properly with probability in continuous sample spaces.

Lotve (1955) Significantly more advanced than Gnedenko, this is a mathematical exposition of probability theory. Limited concern with applications and physical interpretation.
papoulis (1965) An effective, compact presentation of applicd probability theory, followed by a detailed investigation of randorn processes with emphasis on communication theory. Especially recommended for electrical engineers.
parzen (1960) More formal, appreciably more detailed presentation at a mathemntical level slightly above FAPT. More concern with mathematical rather thatn physical interpretation. A lucid, yaluable reference work.
pfeipfer (1905) A more formal development at about the same level as PAl’T. With care, patience, and illustration the author introduces matters of integration, measure, ctc., not mentioned in FAPT. A recommended complement to FAl 'T for readers without training in theoretical mathematics who desire a somewhat more rigorous foundation. Contains an annotated bibliography at the end of each chapter.

PITT (1903) A concise statement of introductory mathematical probability theory, for readers who are up to it. Essentially self-contained, but the information density is very great.

3 Random Processes
cox (1962) Compact, reudable monograph on the theory of renewal processes with npplications.
cox and miller (1965) General text on the theory of random processes with applications.
cox and smataf (1961) Compact, readable monograph which introduces some aspects of elementary queuing problems.
davenpont and noot (1958) Modern elassic on the application of randon promess theory to communication problems.

100B (19.3) Very advanced text on the theory of random processes for readers with adequate mathematical prerequisites. (Such people are unlikely to encounter lAATT.)

FIse (1963) Cited above. Contains a proof of the crgodic theorem for discrete-state discrete-transition Markov processes stated in Chap. \bar{J} of FAPT.
howarn (1960). An entirely clear, brief introduction to the use of Markov models for decision making in practical situations with economic consequences.
howand (in preparation) Detailed investigation of Markov models and their applications in systems theory.
lee (1960) Lucid introductory text on communication applieations of random process theory.
morse (1958) Clear exposition of Markov model applications in queuing theory aspects of a variety of practical operational situations.
papoulis (1965) Cited above.
Parzen (1962) Relatively gentle introduction to randorn process theory with a wide range of representative examples.

4 Classical and Modern Statistics
chervoff and moses (1959) An elementary, vivid introduction to decision theory.
cramer (1946) A thorough, mathematically advanced text on probability and mathematical statistics.
FISZ (1963) Cited above.
frasen (1958) Clear presentation of elementary classical statistical theory and its applications.
fieeman (1963) The last half of this book is a particularly logical, readable presentation of statistical theory at a level somewhat more advanced than Fraser. Contains many references and an annotated bibliography of texts in related fields.
mood and graybila (1963) One of the most popular and successful basie treatments of the concepts and methods of classical statistics.
phatt, baiffa, and schlaffer (1965) From elementary probability theory through some frontiers of modern statistical decision theory with emphasis on problems with economic consequences.
mafpa and schlafea (1961) An advanced, somewhat terse text on modern Baycsian analysis. Lacks the interpretative material and detailed explanatory examples found in the preceding reference.
savage (1954) An inquiry into the underlying conecpts of statistical theory. Docs not require advanced mathernaties.
willims (1054) A gente, animated introduction to game theorythe study of decision making in competitive, probabilistie situations.

5 Complete Tilles of Above References
Chernoff, h., and L. Moses: "Elementary Decision Theory," John Wiley \& Sons, Inc., New York, 1959.
cox, D. R.: "Rencwal Theory," John Wiley \& Sons, Inc., New York, 1962.
-., and H. D. Mllers: "The Theory of Stochastic Processes," John Wiley \& Sons, Inc., New York, 1965.
———, and w. L. smitn: "Queues," John Wiley \& Sons, Ine., New York, 1961.
cramer, h. :"Mathematical Methods of Statistics," Princcton University Press, Princeton, N.J., 1946.
davenport, w. b., Jr., and w. L. root: "Random Signals and Noise," MeGraw-llill Book Company, New York, 1958.
david, F. n.: "Gamcs, Gods, and Gambling," Hafner Publishing Company, Inc., New York, 1962.
Doob, J. L. : "Stochastic Processes," John Wiley \& Sons, Inc., New York, 1953.
feller, w.: "An Introduction to Probability Theory and Its Applications," vol. 1, 2 d cd., John Wiley \& Sons, Inc., New York, 1957.
FISZ, M.: "Probability Theory and Mathematical Statistics," John Wiley \& Sons, Inc., New York, 1963.
fraser, D. A. s.: "Statistics: An Introduction," John Wiley \& Sons, Inc., New York, 1958.
freman, i.: "Introduction to Statistical Inference," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1963.
gnenfnko, 日. v,: "Theory of Probobility," Chelsea, New York, 1962. howard, r. A.: "Dynamic Programming and Markov Processes," The M.I.T. Press, Cambridge, Mass, 1960.
——: (in preparation), John Wiley \& Sons, Inc., New York.
kolmogorov, A. N.: "Foundations of the Theory of Probability" (Second English Edition), Chelsea, New York, 1956.
кyburg, н. e., JR., and h. e. smokler: "Studies in Subjective Probability," John Wiley \& Sons, Inc., New York, 1964.
laplace, A Philosophical Essay on Probabilities, 1825 (English transla(ion), Dover Puhlications, Ine, New York, 1951.
LeE, Y. W.: "Statistical Theory of Communication," John Wiley \& Sons, Inc., New York, 1960.
loeve, m.: "Probability Theory," D. Van Nostrand Company, Inc., Princeton, N.J., 1963.
Mood, A. M., and r. A. Grayblel: "Introduction to the Theory of Statislics," McGraw-Hill Book Company, New York, 1963.
monse, p. m.: "Queves, Inventories, and Maintenance," John Wiley \& Sons, Inc., New York, 1958.
papoulis, A: "Probability, Random Variobles, and Stochastic Processes," MeGraw-Hill Book Company, New York, 1965.
parzen, e.: "Modern Probability Theory and Its Applicalions," John Wiley \& Sons, Inc, New York, 1960
_ -: "Stochastic Processes," Holden-Day, San Francisco, 1962.
pfeiffer, p. e.: "Concepts of Probability Theory," McGraw-Hill Book Company, New York, 1965.
PIT1, н. r.: "Integration, Measure, and Probability," Hafner Publishing Company, Inc., New York, 1963.
pratt, J. w., h. ratffa, and r. schlatfer: "Introduction to Slatistical Decision Theory" (preliminary edition), MeGraw-Hill Book Company, New York, 1965.
raiffa, h., and r. scmlafer: "Applied Statistical Decision Theory," Harvard Business School, Division of Research, Boston, 1961.
savage, L. J.: "The Foundations of Statistics," John Wiley \& Sons, Inc., New York, 1954.
todhunter, l.: "A History of a Mathemalical Theory of Probability from the Time of Paseal to that of Laploce" 1865, Chelsea, New York, 1949. willams, J. d.: "The Compleal Stralegyst, Being a Primet on the Theory of Games of Strotegy," McGraw-Hill Book Company, New York, 1954.
> common PDF's, PMF's, and their means, variances, and transforms

The most common elementary PDF's and PMF's are listed below Only those transforms which may be expressed in relatively simple forms are included.

In eaeh entry involving a single random variable, the random variable is denoted by x. For compound PDF's and PMIF's, the random variables are denoted by two or more of the symbols u, v, w, x, and y. Symbols k, m, and n are used exclusively for nonnegative integer parameters. Unless there is a special reason for using other symbols, all parameters are denoted by the symbols a, b, and c.

The nomenctature used for PDF's and PMF's is not universal. Several of the entries below are, of course, special cases or generalizations of other entries.

APPENDIX TWO

Bernoulli PMF

$$
\begin{aligned}
& p_{s}\left(x_{0}\right)= \begin{cases}1-P & x_{0}=0 \\
P & x_{0}=1 \\
0 & \text { otherwise }\end{cases} \\
& 0<P<1 \\
& E(x)=P \quad \sigma_{x}^{2}=P(1-P) \\
& p_{x}^{r}(z)=1-P+z P
\end{aligned}
$$

Bela PDF

$$
\begin{aligned}
& f_{x}\left(x_{0}\right)= \begin{cases}c(a, b) x_{0} 0^{-1}\left(1-x_{0}\right)^{b-1} & 0<x_{0}<1 \\
0 & \text { otherwise }\end{cases} \\
& a>0 \quad b>0
\end{aligned} \begin{aligned}
& c(a, b)=\frac{(a+b-1)!}{(a-1)!(b-1)!} \\
& E(x)=\frac{a}{a+b} \quad \sigma_{x}^{3}=\frac{a b}{(a+b)^{2}(a+b+1)}
\end{aligned}
$$

Binomial PMF

$$
\begin{aligned}
& p_{x}\left(x_{0}\right)=\left\{\begin{array}{l}
\binom{n}{x_{0}}^{p_{x_{0}}(1-P)^{n-x_{0}}} \\
0
\end{array} \quad x_{0}=0,1,2, \ldots, n\right. \\
& 0<P<1 \quad n=1,2,3, \ldots
\end{aligned}, .
$$

Bivariate-normal PDF

$$
\begin{aligned}
& \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left\{\left[\frac{x-E(x)}{\sigma_{z}}\right]^{2}+\left[\frac{y-E(y)}{\sigma_{y}}\right]^{2}\right.\right. \\
& f_{x, y}\left(x_{0, y_{0}}\right)=\frac{\left.\left.-2 \rho \frac{x-E(x)}{\sigma_{x}} \frac{y-E(y)}{\sigma_{v}}\right\}\right)}{2 \pi \sigma_{z} \sigma_{v} \sqrt{1-\rho^{3}}} \\
& -\infty<x_{0}<\infty \quad-\infty<y_{0}<\infty \\
& \sigma_{x}>0 \quad \sigma_{v}>0 \quad-1<\rho<1 \\
& f_{x, y}^{T}\left(s_{1}, s_{2}\right)=E\left(e^{-r_{1} x^{2}} e^{-r_{1} y^{2}}\right)=\exp \left[-s_{1} E(x)-s_{2} E(y)\right. \\
& \left.+\frac{1}{2}\left(s_{1}{ }^{2} \sigma_{x}{ }^{2}+2 \mu s_{1} s_{y} \sigma_{x} \sigma_{y}+s_{3}{ }^{2} \sigma_{2}{ }^{2}\right)\right]
\end{aligned}
$$

PDF'S, PMF'S; THEIR MEANS, VARIANCES, AND TRANSFORMS

Cauchy PDF

$$
\begin{aligned}
& f_{x}\left(x_{0}\right)=\frac{1}{x} \frac{a}{a^{2}+\left(x_{0}-b\right)^{2}} \quad-\infty<x_{0}<\infty \\
& a>0 \quad-\infty<b<\infty \\
& E(x):=b \quad \sigma_{z}^{2}=\infty
\end{aligned}
$$

[The above value of $E(x)$ is a common definition. Although $E(x)=b$ seems intuitive from the symmetry of $f_{x}\left(x_{0}\right)$, note that
$\int_{-\infty}^{\infty} x_{0} f_{x}\left(x_{0}\right) d x_{0}$
has no unique value for the Cauchy PDF.)

$$
f_{s}^{T}(s)=e^{-s t-a|0|}
$$

Chi-square PDF

$$
\begin{array}{ll}
f_{x}\left(x_{0}\right)=\left\{\left[\left(\frac{n}{2}-1\right)!\right]^{-1} 2^{-n / 2} x_{0}^{(n / 2)-1} e^{-x_{3} / 2}\right. & x_{0}>0 \\
n=1,2,3, \ldots & \text { otherwise } \\
E(x)=n & \\
f_{z}^{T}(s)=(1+2 s)^{-n / 2}=2 n &
\end{array}
$$

Erlang PDF

$$
\begin{aligned}
& f_{x}\left(x_{0}\right)= \begin{cases}\frac{a^{n} x_{0}{ }^{n-1} e^{-a x_{0}}}{(n-1)!} & x_{0}>0 \\
0 & \text { otherwise }\end{cases} \\
& a>0 \quad n=1,2,3, \ldots \\
& E(x)=n a^{-1} \quad \sigma_{x}^{2}=n a^{-2} \\
& f_{S} T(s)=a^{n}(s+a)^{-n}
\end{aligned}
$$

Exponential PDF

$$
\left.\begin{array}{l}
f_{x}\left(x_{0}\right)= \begin{cases}a e^{-a x_{0}} & x_{0}>0 \\
0 & \text { otherwise }\end{cases} \\
a>0
\end{array}\right] \begin{aligned}
& E(x)=a^{-1} \quad \sigma_{z}^{2}=a^{-2} \\
& f_{T}^{T}(s)=a(s+a)^{-1}
\end{aligned}
$$

Gamma PDF

$$
\begin{aligned}
& f_{x}\left(x_{0}\right)= \begin{cases}\frac{x_{0} a_{0} e^{-x_{x} / b}}{a!b^{a+1}} & x_{0}>0 \\
0 & \text { otherwise }\end{cases} \\
& a>-1 \quad b>0
\end{aligned} \begin{aligned}
& E(x)=(a+1) b \\
& f_{x}^{T}(s)=(1+b s)^{-a-1}
\end{aligned}
$$

Geometric PMF

$$
\begin{aligned}
& p_{x}\left(x_{0}\right)= \begin{cases}P(1-P)^{x_{0}-1} & x_{0}=1,2,3, \\
0 & \text { otherwise }\end{cases} \\
& 0<P<1 \\
& E(x)=P-1 \quad \sigma_{z}{ }^{z}=(1-P) P^{-2} \\
& p_{x}{ }^{\top}(z)=z P[1-z(1-P)]^{-1}
\end{aligned}
$$

Hypergeometric PMF

$$
\begin{aligned}
& p_{\mathrm{x}}\left(x_{0}\right)=\left\{\begin{array}{l}
\binom{m}{x_{0}}\binom{n}{k-x_{0}} /\binom{m+n}{k} \quad \begin{array}{l}
x_{0}=0,12, \ldots, k \\
0
\end{array} \quad \text { otherwise }
\end{array}\right. \\
& m=1,2,3, \ldots \quad n=1,2,3, \ldots \quad k=1,2,3, \ldots,(m+n) \\
& E(x)=\frac{m k}{m+n} \quad \sigma_{\mathrm{s}}{ }^{2}=\frac{m n k(m+n-k)}{(m+n)^{2}(m+n-1)}
\end{aligned}
$$

Laplace PDF

$$
\begin{aligned}
& f_{\mathrm{x}}\left(x_{0}\right)=\frac{a}{2} e^{-a\left|x_{y}-b\right|} \quad-\infty<x_{0}<\infty \\
& a>0 \quad-\infty<b<\infty \\
& E(x)=b \quad \sigma_{z}^{2}=2 a^{-2} \\
& f_{x} T^{2}(s)=a^{2} e^{-s t}\left(a^{2}-s^{2}\right)^{-1}
\end{aligned}
$$

Log-normal PDF

$$
f_{x}\left(x_{0}\right)= \begin{cases}\frac{\exp \left\{-\left[\ln \left(x_{0}-a\right)-b\right]^{2} / 2 \sigma^{2}\right\}}{\sqrt{2 \pi} \sigma\left(x_{0}-a\right)} & x_{0}>a \\ 0 & \text { otherwise }\end{cases}
$$

PDF'S, PMF'S; 'THEIR MEANS, VARIANCES, AND TRANSFORMS

$$
\begin{aligned}
& \sigma>0 \quad-\infty<a<\infty \quad-\infty<b<\infty \\
& E(x)-a+e^{b+0, \alpha_{0}^{2}} \quad \sigma_{z}^{2}=e^{2 b+\rho^{2}}\left(e^{a^{2}}-1\right)
\end{aligned}
$$

Maxwell $P D F$

$$
\begin{aligned}
& f_{x}\left(x_{0}\right)= \begin{cases}\sqrt{2 / \pi} a^{3} x_{0}^{2} e^{-a^{1} x_{0}^{2} / 2} & x_{0}>0 \\
0 & \text { otherwise }\end{cases} \\
& a>0
\end{aligned} \begin{aligned}
& E(x)=\sqrt{8 / \pi} a^{-1} \quad \sigma_{x}^{2}=(3-8 / \pi) a^{-2}
\end{aligned}
$$

Mullinomial PMF

$$
\begin{aligned}
& u_{0}=0,1, \ldots, n \quad v_{0}=0,1, \ldots, n \ldots y_{0}=0,1, \ldots, n \\
& u_{0}+v_{0}+\cdots+y_{0}=n \\
& p_{\mathrm{u}}+p_{\mathrm{r}}+\cdots+p_{\mathrm{v}}=1 \quad 0<p_{\mathrm{u}}, p_{\mathrm{v}} \ldots \ldots, p_{\mathrm{v}}<1 \\
& E(u)=n p_{u} \quad E(v)=n p, \quad \because \quad E(y)=n p_{y} \\
& \sigma_{u}{ }^{2}=n p_{u}\left(1-p_{u}\right) \quad \sigma_{v}{ }^{2}=n p_{i}\left(1-p_{v}\right) \quad \cdots \quad \sigma_{v}{ }^{2}=\pi p_{v}\left(1-p_{v}\right)
\end{aligned}
$$

Normal PDF

$$
\begin{aligned}
& f_{x}\left(x_{0}\right)=\frac{e^{-\left\{x_{0}-\left.E(x)\right|^{1 / 2 \sigma_{1}}\right.}}{\sqrt{2 \pi} \sigma_{x}} \quad-\infty<x_{\theta}<\infty \\
& \sigma_{x}>0 \quad-\infty<E(x)<\infty \\
& f_{x} T(s)=e^{-\operatorname{sE}(x)+\left(e^{2} \sigma_{x} I^{\prime} / 2\right)}
\end{aligned}
$$

Pascal PMF

$$
\begin{aligned}
& p_{r}\left(x_{0}\right)= \begin{cases}\binom{x_{0}-1}{n-1} P_{r}(1-P)^{x_{0}-n} & x_{0}=n_{y} n+1, n+2, \ldots \\
0 & \text { otherwise }\end{cases} \\
& 0<P<1 \quad n=1,2,3, \ldots
\end{aligned} \begin{aligned}
& E(x)=n P^{-1} \quad \sigma_{z}^{2}=n(1-P) P^{-2} \\
& p_{z}^{T}(z)=(z P)^{n}\left(1-\left.z(1-P)\right|^{-n}\right.
\end{aligned}
$$

Poisson P:MF

$$
p_{x}\left(x_{0}\right)=\frac{a^{x_{0}} e^{-a}}{x_{0}!} \quad x_{0}=0,1,2, \ldots
$$

$$
\begin{aligned}
& a>0 \\
& E(x)=a \quad \sigma_{z}^{2}=a \\
& p_{z}^{T}(z)=e^{a(x-1)}
\end{aligned}
$$

Rayleigh PDF

$$
\begin{aligned}
& f_{x}\left(x_{0}\right)= \begin{cases}a^{2} x_{0} e^{-a^{2} x_{0} / 2} & x_{0}>0 \\
0 & \text { otherwise }\end{cases} \\
& a>0 \\
& E(x)=\sqrt{\pi / 2} a^{-1} \\
& \sigma_{z}^{2}=(2-\pi / 2) a^{-2}
\end{aligned}
$$

Uniform PDF

$$
\left.\begin{array}{l}
f_{x}\left(x_{0}\right)= \begin{cases}\frac{1}{b-a} & a<x_{0}<b \\
0 & \text { otherwise }\end{cases} \\
-\infty<a<b<\infty \\
E(x)=(a+b) / 2
\end{array} \quad \sigma_{x}^{2}=(b-a)^{2} / 12\right) ~=\left(e^{-a s}-e^{\left.-\delta_{s}\right)[s(b-a)]^{-1}} .\right.
$$

Weibull PDF

$$
\left.\begin{array}{l}
f_{x}\left(x_{0}\right)= \begin{cases}a b x_{0}^{b-1} e^{-a x_{2}^{b}} & x_{0}>0 \\
0 & \text { otherwise }\end{cases} \\
a>0 \quad b>0
\end{array}\right] \begin{aligned}
& E(x)=\left(\frac{1}{a}\right)^{1 / b} \Gamma\left(1+b^{-1}\right) \\
& \sigma_{x}^{2}=\left(\frac{1}{a}\right)^{2 / b}\left\{\Gamma\left(1+2 b^{-1}\right)-\left[\Gamma\left(1+b^{-1}\right)\right]^{2}\right\} \\
& \Gamma(c) \equiv \int_{0}^{\infty} x^{-1} e^{-x} d x
\end{aligned}
$$

Acceptance of a hypothesis, 235
Additivity, 266
Algebra of events, 1
axioms, 3
Approximations, based on central limit
theorem, 215-216
DeMoivre-Laplace, 218
Poisson approximation to binomial
PMF, 219

Axiomb, of algebra of events, 3 of probability measure, 11

Bayes' theorem, 25 continuous form of, 251 use in Bayesian analyais, 251, 253
Bayesian analysis, 231, 250 complementary PDF's, 253

Bayesian analysis, preposterior analysis, 255
Bernoulii law of large numbers, 207
Bernoulli probability mess function, 124
Bernoulli process, 124
definition and summsry of resulta, 129
example, $\$ 30$
interarrival tines, 126
Bernoulli trials, 124
Beta probability dengity function, 254, 272
Binomial probability maas function, 125, 272
approximations, central limit theorem, 216
DeMoivre-Laplace, 218
Poisson, 219
Birth-and-death process, continuous-trangition, 184
diserete-transition, 174
Bivariate normal probability density function, 272

Cauchy probability density function, 93, 273
applicability of central limit theorem (?) 227
Causality and association, 27
Center of mass of probability mass function, 54
Central limit theorema, 212 approximations based upon, 215-216 for binomial PMF, 216 outline of derivation, 213 related to Cauchy PDF (?), 227
Central moments of randon variables, 54 table of second central momentsior common PUF's and PMF's, 271
Chapman-Kolmogorov equation, 166
Chararteristics of interest, stapistical, 230
Chebyshev incquality, 204
Chi-square probability density function, 273
Coding for a noisy channel, 85-86

Collectively exhaustive events, 4
Combinations, 29
Combinatorial analysia, 27
Common probability mass and density

$$
\text { functions, table, } 271
$$

Complementary probability density functions, 253
Complements of events, 2
Compound probability density functions, 69
Compound probability mass functions, 46
Conditional expectation, 53
Conditional independence of eventa, 18 example, 23
Conditional independence of randon vari ables, 51
example, 59
Conditional moments of random variables, 53
Conditional probability, 13
definition, 14
sample-space interpretation, 13
Conditional probability dersity function,

72

Conditional probability mass function, 48
Confideace limilas, 247
Consisteat estimation, 245
Continuity theorm, 214
Continuous random variable, 44, 64
table of common PDF's, 271
Convergence, for deterministic sequence,

205

in the mean, 221
mean-вquare, 221
point-by-point, 212
with probability one, 221
stochastic, 205, 220
Convergence almost everywhere, 221
Convolution, 103
discrete, 120
graphical, 10%
of two impulses, 106
Correlation coefticiert, 94
Countable additivity, 266

Counting in event spaces, 27
Covariance, 94
Critical region of a stalistic, 236
Cumulative distribution function, 66
table for unit normal random variable, 211

Demoivre-Laplace linnit theorem, 218
Dependent trials, 164
(See also Markov processes)
Derived probability density functions, 74
Discrete convolution, 120
Diserete random variable, 44
probability mass function, 44
Discrete-state process, series of dependent triala, 164
(See also Markov processes)

Enumeration in event space, 27
Equality of evente, 3
Ergodie theorem, 170
reference, 267
Erlang probability density function, 138. 273
Errors of type I and type II, 237, 241
Estimation, 231, 243
eonsiatent, 245
maximum-likelihood, 247
refative efficiency, 245
sufficient, 246
unbiased, 245

Event space, 8

use for counting, enumeration, 27
Events, 2
algebra of, 1
collectively exhaustive,
complement, 2
conditional independence, 18
for continuous sample spaces, 65
equality, 3
independence, 17
intersection, 2

Events, mutual independence, 18
mutuaily exclusive, 4
union, 2
Venn diagram, 3
Existence of transiorms, 117 .
Expectation, 53, 74
conditionel, 53
equivalent definitions, 87
for sum of random variables, 56, 108
table of expected values for common
PDF's and PMF's, 271
Experimental value, of random variable, 42 of statistic, 232
Experiments, 1,5
models of, 5
Exponential holding times, 181
Exponential probability density function, $90,138,273$
Exponential transform (ste Transforms)

Falsa acceptance of a hypothesis, 237, 241
False rejection of a hypothesia, 237, 241
Finite additivity, 266
Functions of random variables, 52
derived probability deasity functions, 74
expectation, 53
Further reading, 265

Gamma probability denaity function, 274 Gaussian probability density function (see Normal probability denaity function)
Geometric holding times, 178
Geometric probability mass function, 83 127, 274
Grandmother's Fudge Nut Butter Cookies, 155

Hypergeonetric probability mass function, 274
Hypotheses, parametric and nonparametric, 239

Hypothesis, null, 240
Hypothesis testing, 231, 240
probability of incorrect conclusion, 242
sequentinl event apace for, 242

Improbable event in statiatics, 235
Impulef function, 63
convolution of two impulses, 106
at limits of integrals, 65
warning, 70
Independence of events, 17
conditional, 18
mutual, 18
sanıple-spaco interpretation, 19
Independence of random variables, 51
conditional, 51
linear, 56, 108
mutual, 51
statistical, 52
Independent trials, 124, 134
Inequality, Chebyshev, 204
Inference, statistical, 229
Interarrival times, for Bernoulli process, 126
for Poisson process, 137
for renewal process, 148
Intersection of events, 2
Inverse transforms, 98, 100
examples, 115,133

Joint probability density function (see
Compound probability density functions)
Joint probability mass furction, 46
K-combinations, 29
K-permutations, 28

Laplace probability density function, 274 Law of large numbers, 206
Bernoulli, 207

Level of significance, 235
Limit theorems, 203
central, 212
DeMoivre-Laplace, 218
Poisson approximation to binomial, 219 some speculations, 108
weak law of large numbers, 206
Linear independence of random variables, 56, 108
Little Volcano Bottle Capper, 159
Log-normal probability dembity function, 274

Marginal probability density function, 70
Marginal probability mass function, 47 conditional, 52
Markov processes, 163
birth-and-death process, continuoustransition, 184

$$
\text { discrete-trangition, } 174
$$

Chapman-Kolmogorov equation, 168 condition for discrete-state processes, 164
continuoua-transition process, 180
describing equations, continuous-transi-

$$
\text { tion pracess, } 182
$$

discrete-transition proeess, 173
discrete-transition process, 164
ergodic theorem, 170
examples, of contimuous-transition

$$
\text { process, } 185
$$

of discrete-transition process, 175
exponential holding timen, 181
geometrie halding times, 178 initial conditiona, 167
k-trial transition probabilities, 165
simple method of calculation, IB6 limiting-state probabilities, continuoustransition process, 183
discretc-tranaition process, 167, 173
poriodic state, 169
recurrent state, 168, 182
single chain, 169, 182

Markov processes, state classification, 167, 169, 181
state description of a syatem, 164
transient state, 168, 181
transition characterization for continu-

$$
\text { ous-transition process, } 180
$$

transition probabilities for discrete-transition process, 165
Maximum-likelihood estimation, 247, 256
Maxwell probability density function, 275
Mean (see Expectation)
Mean-square convergence, 22I
Mean-square error, 94
Mellin trangform, 120
Mixed probability density function, 67
Models, of experiments, 5, 6
gtatistical, 230
Moments of random variables, 54, 74 centrai, 54
conditional, 53
from transforms, 100
Multinomial probability mass function, 275
Mutual independence, of events, 18
of random variables, 51
Mutually excluaive events, 4

Negative binomial probability mass func(ion, 153
Neopalenantioctipus (prehistoric), 225
Nonparametrie hypotbeais, 239
Normal approximations to other probability functions (see Central limit theorems)
Normal probability deasity function, 93, 95, 207, 275
bounds for area under tails, 222
sums of independent normal random varinbles, 209
Normatized covariance, 94
Normalized random variable, 213
Nowhere to Fungleton Bus, 144
Null hypothesis, 240

Parametric hypothesis, 239
Pascal probability mass function, 128, 275
PDF (see Probability density function)
Pcriodic state, 189
Permutations, 27
Physieal causality and assuciation, 27
PMF (see Probability mass function)
Point-by-point convergence, 212
Poisson approximation to binomial prob-
ability mass function, 219
Poisson probability mass function, 84, 136,
140, 275-276
sums of independent Poiszon random variables, 139
Poisson proceqя, 133
additional properties, 139
definition and summary of results, 140
examples, 142
independent randor erasures, 140
interarrival times, 137
Preposterior analysis, 255
Probability, axioms, 11
conditional, 13
relative-frequency interpretation, 207
Probability density function (PDF), 64
complementary, 253
compound, 69
conditional, 72
definition, 65
derived for a function of random vari-

$$
\text { ables, } 74
$$

expectation, 74
marginal, 70
mixed, 67
as \& PMF, 69, 99
table of common PDF's, 271
Probability mass function (PMF), center
of mass, 54
compound, 46
conditional, 48
conditional marginal, 52
definition, 45
expectation, 53
marginal, 47

Probability mass function (PMF), as a PDF, 69,99
table of common PMF's, 27
Probability measure, 1,10
Probability trees, 16

Queues, 188

Random incidence, 149
Random variable, 41
central moments, 54
conditional expectation, 53
conditional independence, 51
continuous, 44, 64
cumulative distribution function, 66
definition, 42
discrete, 44
expectation, 53, 74
experimental value, 42
functions of, 52
independence, 51, 74
linear independence, 50
moments, 54, 100
probability density function, 64
(See also Probability density function (PDF)]
probability mass function, 44
(See also Probability mass function

(PMF)]

standard deviation, 55
statistical independence, 52
suma of, 56
(See also Sums of independent random variables)
variance, 54, 101
Rayleigh probability density function, 276
Recurrent state, 168
Rejection of hypothesis, 235
Relative efficiency of estimators, 245
Relative-frequency interprctation of probability, 207

Relative likclihood, 10
Renewal process, 148
conditional waiting times, 148
randoin incidence, 149
Run, 42
s trangform (see Transforms)
Sample of yize $n, 232$
Sample mean, 206, 233
Sample space, $1,5,6$
examples, 8
sequential, 7, 16
Sample value of statistic, 232
Sample variance, 233
as estimator of population variance, 234
Sequential event space, for hypothesis

$$
\text { test, } 242
$$

for significance teft, 239
Sequential sample apace, 7, 16
examples of use, 21
Significance testing, 231, 234
Single chain, 169
Sludge River, 196
Standard deviation, 55
Standardized random variable, 213
State description, 164
State-of-knowledge probability density function, 2.50
Statistic, 232
acceptance region, 236
critical or rejoction region, 236
experimental value, 232
sample valuc, 232
Statistical independence of random vari-

ables, 52

Statistical inference, 229
Statistical models, 230
Statistics, 229
Step furction, 64
Stochastic convergence, 205, 220
Subjective probability, 266
Sufficiency of estimators, 246

Sums of independent random variables,
103, 107
many, 108, 212
normal, 209
Poisson, 139
random number of, 109
Sums of random variables, 56

Tables, common PDF's, PMF's, and their expected values, variances, and transforms, 271
cumulative probability distribution
function for unit normal random
variable, 211
Trans-Australinn Highway, 142
Transforms, continuity theorem, 214
existence, 117
expenential transform (s trangform), 98
expressions for moments and variance, 101
inverse transforms, 98, 100 examples, 115, 133
Mellin, 120
moment generating properties, 100
s transform (exponential transform), 98
for sum of independent random vari-

$$
\text { ables, } 106
$$

for sum of random number of independent random variables, 109
table of transforms of common PDF's and PMF'S, 271
z transiorm, 99
Transient state, 168
'Trees, 7
probability, 16

Unbiased estimator, 245
Uniform probability density function, 276 Union of events, 2
Unit impulsc function (see Impulse function)
Unit normal probability density function, 210
cumulative table, 21
Unit step function, 64
Universal event, 2,6

Variance, 54
of common PDF's and PMF's, 271
of sum of linearly independent random variables, 108
of sum of random number of independent identically distributed random variables, 111
in terms of transforms, 101
Venn diagram, 3

Waiting lines, 188
Weak law of large numbers, 206
Weibull probability dengity function, 276

