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1-1 A Brief Introduction to the Algebra of Events 

We first introduce an explicit language for our discussion of probability 
theory. Such a language is provided by the algebra of events. We 
wish to develop an understanding of those introductory aspects of this If all points of C' mhich are in B are also in A,  
algebra mhich are essential to our study of probability theory and its then event B is said to be included in event A. 
applications. 

Let's begin with a brief tour of some of the definitions, concepts, Two event.s A and B are said to be equal if every point of U which is 
and operations of the algebra of events. in A is also in B and every point of C; which is in A' is also in B'. 

Another way to state t,he condition for the equalit,y of two events would 
be to say that two events are equal if and only if each event, is included 
in the other event. 

We have sampled several of the notions of the algebra. of events. 
Events (or sets) are collections of points or areas Pictures of events in the universal set, such as t,hose used above, are 
in a space. The physical interpretation of this known as Venn diagrains. Formally, the following is a set of laws 

which fully defines t:he algebra of events: space will be provided in the following section. (azio~ns) 

I A + B = B + A  Commutative law 

2 A -!-( B  + C) = ( A  + B)  + C Associative law 

3 A(B + C) = AB + AC Distributive law 
The collection of all points in the entire space is 4 (A')' = A 6 AA '=  d,
called U ,  the universal set or the universal event. 

5 (AB)' = A' + B' 7 A U = A  

The Seven Axioms of the Algebra of Eyents 
Event A', the coinplement of event A,  is the 
collection of all points in the universal set which 
are not included in event A. The null set 4 Technically, these seven axioms define everything there is to 
contains no points and is the complement of know about the algebra of events. The reader may consider visualiz- 
the universal set. ing each of these axioms in a Venn diagram. Our selection of a list of 

axioms is not a unique one. Alternative sets of axioms could be stated 
which would lead to the same results. 

Any relation which is valid in the algebra of events is' subject to 
The intersection of two events A and B is the proof by use of the seven axioms and with no additional information. 
collection of all points which are contained both Some representative relations, each of which may be interpreted easily 
in A and in B. For the intersection of events on a Venn diagram, are 
A and B we shall use the simple notation AB. A + A = A  A + u = ~ ; :  

A + A B = A  A + BC = ( A  + B)(A  + Cj 

A + A f B = A + B  A4 = 4 
The union of two events A and B is the collec- A + A ' =  U A(BC) = (AB)C
tion of all points which are either in A or in B 
or in both. For the union of events A and B If it were our intention to prove (or test) relations in the algebra 

I I we shall use the not,ation A + B. of events, we would find it surprisingly taxing to do so using only the 
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seven axioms in their given form. One could not take an '(obvious" A list of events is collectively exhaustive if each point in the universal 
step such as using CD = DC without proving the validity of this rela- set is included in a t  least one event in the list. A Venn diagram for 

tion from the axioms. For instance, to show that CD = DC, we may three collectively exhaustive events A, B, C could be 
proceed 

C' + D' = D' + C' Axiom (1) with A = C' and B = D' 
(C'4- D')' = (D'+ C')' Take complement of both sides 

By use of axioms (5 )  and (4) 

The task of proving or t,esting relations becomes easier if we have 
relations such as the above available for direct use. Once such rela-
tions are proved via the seven axioms, we call them theol-ems and use 
then1 with the same validity as the original axioms. but in no case may there be any point in the universal set which is 

We are already prepared to note those definitions and properties included in none of the events. A list of events may be mutuaI1y 

of the algebra of events which will be of value to us in our study of exclusive, collectively exhaustive, both, or neither. After the discus-

~robabilitv. - sion of sample space in the next section, we shall have many oppor-
./ w tunities to consider lists of events and familiarize ourselves with the 

__C - use of these definitions.-
v - We note two additional matters with regard to the algebra ofA list of events A,, At, . . . , AN is said to be composed of nzutually --- events. One is that we do not make errors in the algebra of events if

exclusive events if and only if we happen to include the same term several times in a union. If we are 
ziEzzz trying to collect all the points in a rather structured event, we need onlyi f i = j  -zzzzs 

+A = if i = l , 2  , . . . ,  N; j = l , 2  , . . . ,  N - be sure to include every appropriate 'point a t  least once-multiple--- inclusion will do no harm. 
Another consideration is of particular importance'in dealing with 

A list of events is composed of mutually exclusive events if there is actual problems. The algebra of events offers a language advantage in 

no point in the universal set which is included in more than one event describing complex events, if we are careful in defining all relevant 

in the list. A Venn diagram for three n~utuallyexclusive events A, sirnpIe events. Since we shall be making conscious and subconscious 

B, C could be use of the algebra of events in all our work, one necessary warning 
should be sounded. ('He who would live with the algebra of events 
had better know exactly.with which events he is living." The original 
defined events should be simple and clear. If this is the case, i t  is then 
an easy matter to assemble expressions for complex events from the 
original definitions. Foi instance: 

NEVER Event A : Neither Tom nor Mary goes without Harry unless 
they see Fred accompanied by Phil or i t  is raining 
and . . . . 

but in no case may there be any overlap of the events. - BETTER Event A : Tom goes. Event B: Mary goes. 
Z E Z z  Event C: Harry goes. Etc.
ZzEZz __.-

A list of events A, ,  A2, . . . , A y  is said to be collectiuely e d a u s t i u e  if ;=" 1-2 Sample Spaces for Models of Experiments=zzand only if -
-=2: In  this book, we use the word "experiment" to refer to any process -

A1 + A2 + . . . + A,\r = U -- which is, to some part,icular observer, nondeterministic. I t  makes no=== 
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difference whether the observer's uncertainty is due to the nature of 
the process, the state of knowledge of the observer, or both. 

The first six chapt.ers of this book are concerned with the analysis 
of abstractions, or models of actual physical experiments. Our last 
chapter is concerned with the relation of the model to the actual 
experiment. 

I t  is probably safe to state that there are more variables asso- 
ciated with the outcome of any physical experiment than anybody 
could ever care about. For instance, to describe the outcome of an 
actual coin toss, we could be concerned with the height of the toss, the 
number of bounces, and the heating due to impact, as well as the more 
usuaI consideration of which face is up after the coin settles. For most 
purposes, however, a reasonable model for this experiment would involve 
a simple nondeterministic choice between a head and a tail. 

Many of the "trick" probability problems which plague students 
are based on some ambiguity in the problem statement or on an inexact 
formulation of the model of a physical situation. The precise state- 
ment of an appropriate sample space, resulting from a detailed descrip- 
tion of the model of an experiment, will do much to resolve common 
difficulties. In  this text, we shall literally live in sample space. 

___= 
__= - 

Sample space: The finest-grain, mutually exclusive, collectively exhaus- - 
tive listing of all possible outcomes of a model of an S S E  
experiment ;i-__iZ 

__iZ: - - 
The '(finest-grain" property requires that all possible distinguishable 
outcomes allowed by the model be listed separately. If our model for 
the flip of a coin is simply a nondeterministic selection between possible 
outcomes of a head and a tail, the sample space for this model of the 
experiment would include only two items, one corresponding to each 
possible outcome. 

To avoid unnecessarily cumbersome statements, we shall often 
use the word experiment in place of the phrase ((model of an experi- 
ment." Until the final chapter, the reader is. reminded that all our 
work is concerned with abstractions of actual physical situations. 
When we wish to refer to the real world, we shall speak of the "physical 
experiment.'' 

Soon we shall consider several experiments and their sample 
spaces. But first we take note of two matters which account for our 
interest in these spaces. First, the universal set with which we deal in 
the study of probability theory will always be the sample space for an 
experiment. The second matter is that any event described in terms 
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of the outcome of a performance of some experiment can be identified 
as a collection of events in sample space. In  sample space one may 
collect the members of any event by taking a union of mutually exclu- 
sive points or areas from a collectively exhaustive space. The advan- 
tage of being able to  collect any event as a union of mutually exclusive 
members will become clear as we learn the properties of probability 
measure in the next section. 

A sample space may look like almost anything, from a simple 
, listing to a multidimensional display of all possible distinguishable out- 

comes of an experiment. However, two types of sample spaces seem 
to be the most useful. 

One common type of sample space is obtained from a sequential 
picture of an experiment in terms of its most convenient parameters. 
Normally, this type of sample space is not influenced by our particular 
interests in the experimental outcome. Consider the sequential sample 
space for a reasonable model of two flips of a coin. We use the notation 

Event (3 : on the nth toss of the c ~ i n  

This leads to the sequential sample space 

HI H2 
The union of these two sample points 

-------./correspond) to the event 'net outcome 
is exactly one head%r 'both flips did 
not produce the same result"or 

Above we picture the experiment proceeding rightward from the left . 

origin. Each sample point, located a t  the end of a terminal tree branch, 
represents the event corresponding to the intersection of all events 
encountered in tracing a path from the left origin to that sample point. 
On the diagram, we have noted one example of how an event may be 
collected as a union of points in this sample space. 

Formally, the four sample points and their labels constitute the 
sample space for the experiment. However, when one speaks of a 
sequential sample space, he normally pictures the entire generating tree 
as well as the resulting sample space. 

For an experiment whose outcomes may be expressed numeri- 
cally, another useful type of sample space is a coordinate system on 
which is displayed a finest-grain mutually exclusive collectively exhaus- 
tive set of points corresponding to every possible outcome. For 
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instance, if we throw a six-sided die (with faces labeled 1, 2, 3, 4, 5, 6) 
twice and caIl the value of the up face on the nth toss x,, we have a 
sample space with 36 points, one for each possible experimental outcome, 

_4.--------- The union of these sample 
points corresponds to the T/*, event ( x 2  -xl) > 2.0 

~ o o o o 

* 0 0 ('37-*- This sample point corresponds to 
the experimental outcome "a four 
on the first toss and a three on 
the second tossn 

Often we shall have reason to abbreviate a sample space by 
working with a mutually exclusive collectively exhaustive listing of all 
possible outcomes which is not finest-grain. Such spaces, possessing 
all attributes of sample spaces other than that they may not list 
separately all possible distinguishable outcomes, are known as event 
spaces. If a,list of events A Az,  . . . , A.v forms an event space, each 
possible finest-grain experimental outcome is included in exactly one 
event in this list. However, more than one distinguishable outcome 
may be included in any event in the list. 

We now present some sample and event spaces for several 
experiments. 

1 Experiment: Flip a coin twice. 

Notation : Let 1;;) be the event (yzt) on the nth toss. 

We already have seen the sequential sample space for this experiment, 
but let's consider some event spaces and some other displays of the 
sample space. The sample space in a different form is 
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The sample space displayed as a simple listing is 

eH1H2 @ H I T 2  eT1H2 * T I T 2  

An example of an event space but not a sample space for this experi- 
ment is 

*HI @TI 

Another example of an event space but not a sample space is 

eH1T2 *(HrT2)' 

The,following is neither an event space nor a sample space: 

*HI * T i  *H2 *T2 

2 Experiment: Flip a coin until we get our first head. 

Notation : Let 1:;) be the event ($1:) on the nth toss. 

A sample space generated by a sequential picture of the experiment is 

A sample space which is a simple listing for this experiment, with N 
representing the number of the toss on which the first head occurred, is 

Note that this is still a finest-grain description and that one can specify 
the exact sequence of flips which corresponds to each of these sample 
points. 

-4n event space but not a sample space for this experiment is 

Neither a sample space nor an event space for this experiment is 

3 Experiment: Spin a wheel of fortune twice. The wheel is continuously 
calibrated, not necessarily uniformly, from zero to unity. 

Notation: Let x, be the exact reading of the wheel on the nth spin. 
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A sample space for this experiment is algebra of events, one obtains a consistent system for associating real 
x, nonnegative numbers (probabilities) with events in sample space and 

for computing the probabilities of more complex events. If we use the a. notation P(A) for the probability measure associated with event A, then 
Every possible distinguishable the three additional axioms required to establish probability measure 
outcome (xl, x2 ) is represented 
as a different point in this space are: ---___i=----1 For any event A, P(A) 2 0 

2 P(U) = 1 ---
Let's collect several typical events in this sample space. 3 If AB = (b, then P(A + B) = P(A) + P(B) ==p:-

Event x 2  > !j 
The Three Axioms of Probability Measure ___i--

__ij=i -
The first axiom states that all probabilities are to be nonnega-

tive. By attributing a probability of unity to the universal event, the 
second axiom provides a normalization for probability measure. The 
third axiom states a property that most people would hold to be appro-
priate to a reasonable measure of the relative likelihood of events. 
If we accept these three axioms, all of conventional probability theory 
follows from them. 

The original assignment of probability measure to a sample space 
for an experiment is a matter of how one chooses to model the physical 
experiment. Our axioms do not tell us how to compute the probability 
of any experimental outcome "from scratch." Before one can begin 
operating under the rules of probability theory, he must first provide 
an assignment of probability measure to the events in the sample space. 

Given a physical experiment to be modeled and analyzed, there 
is no reason why we would expect two different people to agree as to 
what constitutes a reasonable probability assignment in the sample 
space. One would expect a person's modeling of a physical experiment 
to be influenced by his previous experiences in similar situations and 

Any point in a samplespace corresponds to one possible outcome by any other information which might be available to him. Proba-
of a performance of the experiment. For brevity, we shall often refer bility theory will operate "correctly" on any assignment'of probability 
to the sample point as though it were the event to which it corresponds. to the sample space of an experiment which is consistent with the three 

axioms. Whether any such assignment and the results obtained from 
it are of any physical significance is another matter.

1-3 Probability Measure and the Relative Likelihood of Events Ifwe consider the definition of sample space and the third axiom 
To complete our specification of the model for a physical experiment, of probability measure, we are led to the important conclusion, 
we wish to assign probabilities to the events in the sample space of the -
experiment. The probability of an event is to be a number, represent- -
ing the chance, or "relative likelihood," that a performance of the Given an assignment of probability measure to the finest-grain events --
experiment will result in the occurrence of that event. in a sample space, the probability of any event A may be computed by 

=Z!EEZZ
This measure of events in sample space is known as probability summing the probabilities of all finest-grain events included in event A. ZEES -measure. By combining three new axioms with the seven axioms of the ---
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One virt,ue of working in sample space is that, for any point in the 
sample space there must be a "yes" or "no" answer as to whether 
the point is included in event A. Were there some event in our space 
for which this .was not the case, then either the space would not be a 
sample space (because it did not list separately certain distinguishable 
outcomes) or our model is inadequate for resolution between events 
A and A'. We shall return to this matter when we discuss the sample- 
space interpretation of conditional probability. 

One can use the seven axioms of the algebra of events and the 
three axioms of probability measure to prove various relations such as 

Because we shall live in sample space, few, if any, such relations will 
be required formally for our work. We shall always be able to employ 
directly the third axiom of probability measure to compute the proba- 
bility of complex events, since we shall be expressing such events as 
unions of mutually exclusive members in a sample space. In  computing 
the probability of any event in sample space, that axiom states that 
we must include the probability of every sample point in that event 
exactly once. hlultiple counting caused no error in taking a union in 
the algebra of events to describe another event, but one must carefully 
confine himself to the axioms of probability measure when determining 
the probability of a complex event. 

There are many ways to write out a "formula" for the proba- 
bility of an event which is a union such as P ( A  -+- B + C). Using 
the third axiom of probability measure and looking a t  a Venn diagram, 

we may, for instance, write any of the following: 

Obviously, one could continue listing such relations for a very long 
time. 

Now that we have considered both the algebra of events and 
probability measure, i t  is impo.rtant to recall that : 

Events are combined and operated upon only in accordance with the 
seven axioms of the algebra of events. 
The probabilities of events are numbers and can be computed only in 
accordance with the three axioms of ,probability measure. 
Arithmetic is something else. 

P [ A  + CD + B ( A  + C'D)] The algebra of events applies 
inside the brackets. I t  oper- 
ates upon events and has noth- 

The axioms of probability the- ing to do with their measure. 
ory are used in obtaining the 
numerical value of this quan- 
tity. 

In practice, we shall usually evaluate such probabilities by collecting 
the event as a union of mutually exclusive points in  sample space and 
summing the probabilities of all points included in the union. 

1-4 Conditionai Probability and Its Interpretation in Sample Space 

Assume that we have a fully defined experiment, its sample space, 
and an initial assignment of probability to each finest-grain event in 
the sample space., Let two events A and B be defined on the sample 
space of this experiment, with P ( B )  # 0. 

We wish to consider the situation which results if the experiment 
is performed once and we are told only that the experimental outcome 
has attribute B. Thus, if B contains more than one sample point, we 
are considering the effect of "partial information" about the experi- 
mental outcome. 

Let's look a t  a ~ a & ~ l e - s ~ a c e  picture of this situation. Consider 
a sample space made up of sample points S1,Sz,. . . , S.V. 



Given that event B has occurred, we know that the sample point repre- 
senting the experimental outcome must be in B and cannot be in B'. 
We have no information which would lead us to alter the relative proba-
bilities of the sample points in B. Since we know one of the sample 
points in B must represent the experimental outcome, we scale up their 
original probabilities by a constant, l /P(B), such that they now add to 
unity, to obtain conditional probabilities which reflect the influence of 
our partial information. 

We formalize t,hese ideas by defining P(Sj ( B), the "conditional 
probability of S, given B," to be 

The conditional probability of any other event, such as A, is to be 
the sum of the conditional probabilities of the sample points included 
in A, leading to the common definition of the conditional probability 
of event A given B. --

P(AB)P(A 1 B) = -
P(B) 

definedonlyforP(B)$O EEE 
= 

-which may be obtained from our previous statements via -
2 P(8.B) P(AB)L=-
P(A I B) = C P(SjIB) = 

P(B) P ( B )  
----= 

all j in A all j in A 

We may conclude that one way to interpret conditional proba- 
bility is to realize that a conditioning event (some partial information 
about the experimental outcome) allows one to move his analysis from 
the original sample space into a new conditional space. Only those 
finest-grain events from the original sample space which are included in 
the conditioning event appear in the new conditional space with a non- 
zero assignment of conditional probability measure. The original ("a 
priori") probability assigned to each of these finest-grain events is 
multiplied by the same constant such that the sum of the conditional 
("a posteriori") probabilities in the conditional space is unity. I n  the 
resulting conditional sample space, one uses and interprets these a posteriori 
probabilities exactly the same way he uses the a priori probabilities in the 
original sample space. The conditional probabilities obtained by the 
use of some partial informat,ion will, in fact, serve as initial probabilities 
in the new sample space for any further work. 

We present one simple example. A fair coin is flipped twice, and 
Joe, who saw the experimental outcome, reports that "at least one toss 

resulted in a head." Given this partial information, we wish to deter- 
mine the conditional probability that both tosses resulted in heads. 

Using the notation and the problem statement, ire may draw a 

sample space for the experiment and indicate, in the P(*) column, our 
a priori probability for each sample point. 

For the above display, we defined the events A and B to be "at least one 
head" and "two heads," respectively. In  the A, B, and AB columns we 
check those sample points included in each of these events. The proba- 
bility of each of these events is simply the sum of tthe probabilities 
of the sample points included in the event. (The only use of the B 
column in this example was to make it easier to identify the sample 
points associated with the complex event AB.) 

The desired answer P(B I A )  may be found either directly from 
the definition of conditional probability 

or by noting that, in the conditional sample space given our event A, 
there happen to be three equally likely sample points, only one of 
which has attribute B. 

The solution to this problem could have been obtained in far less 
space. We have taken this opportunity to introduce and discuss a type 
of sample-space display which will be valuable in the investigation of 
more complex problems. 

It is essential that the reader realize that certain operations 
(such as collecting events and conditioning the space) which are always 
simple in a sample space may not be directly applicable in an arbitrary 
event space. Because.of the finest-grain property of a sample space, 
any sample point must be either wholly excluded from or wholly included 
in any arbitrary event defined within our model. However, in an event 
space, an event point A might be partially included in B, some other 
event of interest. Were this the case, the lack of detail in the event 
space would make it impossible to collect event B in this event space or 
to condition the event space by event B. 
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For instance, suppose that for the coin example above we were sum of the probabilities on the branches leaving any nonterminal node 
given only the event space must sum to unity; otherwise the terminal nodes could not represent a 

collectively exhaustive listing of all possible outcomes of the experiment. 
*HI *T1H2 *TIT2 Of course, any tree sample space which contains the complete set 

of finest-grain events for an experiment is a "correct" sample space.
its probability assignment, and no other details of the experiment. In any physical situation, however, the model of the experiment will 
Because this event space lacks adequate detail, it would be impossible usually specify the sequential order of the tree if we wish ,to label all 
to calculate the probability of event Hz or to condition this space by branches with the appropriate conditional probabilities without any 
event H2. calculations. 

When we are given a sample space for an experiment and the Sometimes, a complete picture of the sample space would be too 
'probability assigned to each sample point, we can answer all ques- large to be useful. But it might still be of value to use an "outline" of 

tions with regard to any event defined on the possibleexperimental the actual sample space. These outlines may be "trimmed" proba-
outcomes. bility trees for which we terminate uninteresting branches as soon as 

possible. But once we have substituted such an event space for the 
1-5 Probability Trees for Sequential Experiments sample space,-wemust again realize that we may be unable to perform 

certain calculations in this event space.
Sequential sample and event spaces were introduced in Sec. 1-2. Such 
spaces, with all branches labeled to indicate the probability structure 1-6 The independence of Events
of an experiment, are often referred to as probability trees. Consider 
the following example: Thus far, our structure for probability theory includes seven axioms 

for the algebra of events, three more for probability measure, and the 
definition and physical interpretation of the concept of conditional 
probability. We shall now formalize' an intuitive notion of the inde-
pendence 'of events. This definition and its later extensions will be of 
considerable utility in our work. 

In  an intuitive sense, if events A and B are defined on the sample 
space of a particular experiment, we might think them to be "inde-
pendent" if knowledge as to whether or not %heexperimental outcome 
had attribute B would not affect our measure of the likelihood that the 
experimental outcome also had attribute A.  We take a formal state-
ment of this intuitive concept to be our definition of the independence 
of two events. 

= This would be a sample space for an experiment in which?for instance, ----__.-the "C1 or Cz" trial occurs only if ALBzhas resulted from the earlier Two events A and B are defined to be independent if and only if ZZZstages of the sequential experiment. As before, one sample point ------appears for each terminal branch of the tree, representing the intersec- P ( A  I B )  = P ( A )  = ----tion of all events encountered in tracing a path from the left origin to a ---terminal node. 
Each branch is labeled such that the product of all branch proba- From the definition of conditional probability, as long as  

bilities from the left origin to any node equals the probability that P ( A )  # 0 and P ( B )  # 0, we may write 
t,heevent represented by that node will be the outcome on a particular 
performance of the experiment. Only the first set of branches leaving 
the origin is labeled with a priori probabilities; all other branches When we substitute the condition for the independence of A and B into 
must be labeled with the appropriate conditional probabilities. The this equation, we learn both that P ( A  I B )  = P ( A )  requires that 



P(B 1 A) = P(B) and that an' alternative statement of the condition 
for the (mutual) independence of two events is P(AB) = P(A) P(B). 

If A and B are other than trivial events, i t  will rarely be obvious 
whether or not they are independent. To test two events for inde- ' 

pendence, we collect the appropriate probabilities from a sample space 
to see whether or not the definition of independence is satisfied. 
Clearly, the result depends on the original assignment of probability 
measure to the sample space in the modeling of the physical experiment. 

We have dejined conditional probability such that (as long as 
none of the conditioning events is of probability zero) the following 
relations always hold : 

P(AB) = P(A I B)P(B) = P(B I A)P(A) 

P(ABC) = P(A)P(BC I A) = P(B)P(C ( B)P(A 1 BC) 
= P(AC)P(B I AC) = . . 

but only when two events are independent may we write . 

We extend our notion of independence by defining the mutual 
independence of N events Al, A2, . . . , AN. 

- - - = - - 
N events AI, A2, . . . , AN are defined to be mutually independent if and - 
only if - = 

, - - - - 
P(Ai I AjAk . . . A,) = P(AJ for all i # j, k, . . . p ;  v - - = - 

1 < i , j , k , .  . . p _ < N  ZZESZ - - - - - 
This is equivalent to requiring that the probabilities of all possible 
intersections of these (different) events taken any numb-er a t  a ,  time 
[such as P(A1A3A4A9)] be given by the products of the individual event 
probabilities [such as P(A P(A3) P(A4) P(A9)]. Pairwise independ- 
ence of the events on a list, as defined a t  the beginning of this section, 
does not necessarily result in the mutual independence defined above. 

One should note that there is no reason why the independence or 
dependence of events need be preserved in going from an a priori sample 
space to a conditional sample space. Similarly, events which are 
mutually independent in a particular conditional space may or may not 
be mutually independent in the original universal set or in another 
conditional sample space. Two events A and B are said to be condi- 
tionally independent, given C, if it is true that 

This relation does not require, and is not required by, the separate 
condition for the unconditional independence of events A and B, 

P(AB) = P(A)P(B) 

We close this section with a consideration of the definition of 
the independence of two events from a sample-space point of view. 
One statement of the condition for the independence of events A and B, 
with P(B) f 0, is 

P(AB) 
P ( A  I B) = P ( A )  or, equivalently, P ( A )  = - P(B) 

Thus, the independence requirement is that event AB is assigned a , '  

fraction of the probability measure of event B which is numerically 
equal to P(A). As one would expect, we see (from the above diagram 

i 

i 
and the last'equation) that, as long as P(A) # 0 and P(B) # 0, events 
A and B cannot be independent if they are mutually exclusive. 

1-7 Examples 

example 1 Our first example is simply an exercise to review the properties of 
probability measure, conditional probability, and some definitions from 
the algebra of events. The reader is encouraged to work out these 
examples for himself before reading through our discussion of the 
solu t.ions. 

Suppose that we ate given three lists of events, called lists 1, 2, 
and 3. All the events in the three lists are defined on the same experi- 
ment, and none of the events is of probability zero. 

List 1 contains events Al, A2, . . . , Ak and is mutually exclusive 
and collectively exhaustive. 

List 2 contains events B1, B2, . . . , B1 and is mutually exclusive 
and collectively exhaustive. 

List 3 contains events C1, C2, . . . , C, and is mutually exclusive 
but not collectively exhaustive. 
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Evaluate each of the following quantities numerically. If you 
cannot evaluate them numerically, specify the tightest upper and lower 
numerical bounds you can find for each quantity. 

Part (a) requires that we sum the probability measure associated 
with each member of a mutually exclusive but not collectively exhaus- 
tive list of events defined on a particular experiment. Since the events 
are mutually exclusive, we are calculating the probability of their union. 
According to the conditions of the problem, this union represents an 
event of nonzero probability which is not the universal set; so we obtain 

For part (b), the Ai's are mutually exclusive so we note that 
P(A2 / A,) is zero unless j = 2. When j = 2, we have P(A2 IAz), which 
is equal to unity. Therefore, we may conclude that 

Again in part (c), the mutually exclusive property of the Ai's 
will require P(AiAj) = O unless j = i. If j = i, we have P(AjAj), 
which is equal to P(Aj); so upon recalling that the Ai list is also col- 
lectively exhaustive, there follows 

In part (d), we know that C2 and C) are mutually exclusive. 
Therefore, Cgand C3 can never describe the outcome of the same per- 
formance of the experiment on which they are defined. So, with no 
attention to the properties of the Aj9s (assuming that we can neglect 
any pathological cases where the conditioning event A,C3 would be of 
probability zero and the conditional probability would be undefined), 
we have 
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Part (e) is most easily done by direct substitution, 

and since we are told that the Aj7s are nzutually exclusive and collec- 
tively exhaustive, we have 

For part (f), we can use the-definition of conditional probability 
and the given properties of lists 1 and 2 to write 

The quantity to be evaluated in part (g) involves the summation 
of conditional probabilities each of which applies to a different condi- 
tioning event. The value of this sum need not be a probability. By 
decomposing ,the universal set into Al, A2, . . . ,Ak and considering a 
few special cases (such as B1 = U)consistent with the problem state- 
ment, we see 

example 2 To the best of our knowledge, with probability 0.8 A1 is guilty of 
the crime for which he is about to be tried. Bo and Ci, each of whom 
knows whether or not A1 is guilty, have been called to testify. 

, Bo is a friend of Al's and will tell the truth if A1 is innocent 
but will lie with probability 0.2 if A1 i s  guilty. Ci hates everybody 
but the judge and will .tell the truth if A1 is guilty but, will lie with 
probability 0.3 if A1 is.innocent. 

Given this model of the physical situation: 

(a) Determine the probability that the witnesses give conflicting 
testimony. 

(b) Which witness is more likely to commit perjury? 
(c) What is the conditional probability that A1 is innocent, given that 

Bo and Ci gave conflicting testimony? 
{d) Are the events "Bo tells a lie" and "Ci tells a lie" independent? 

Are these events conditionally independent to an observer who 
knows whether or not A1 is guilty? 
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We begin by establishing our notation for the events of interest: 

Event A : A1 is innocent. 
Event B: Bo testifies that A1 is innocent. 
Event C: Ci testifies that A1 is innocent. 
Event X : The witnesses give conflicting testimony. 
Event Y: Bo commits perjury. 
Event Z: Ci commits perjury. 

Now we'll draw a sample space in the form of a-probability tree 
and collect the sample points corresponding to the events of interest. 

To find the probability of any event in sample space, we simply sum the 
probabilities of all sample points included in that event. (It  is because 
of the ,mdually exclusive property of the sample space that we may 
follow this procedure.) Kow, to answer our questions, 

a P(X) = P(BC' + B'C) = P(BC') + P(B'C) = 0.22 

b P ( Y )  = P(ABf + A'B) = P(AB') + P(AfB) = 0.00 + 0.16 = 0.16 

P(Z) = P(ACf + AfC) = P(ACf) f P(A'C) = 0.06 + 0.00 = 0.06 

Therefore Bo is the more likely of the witnesses to commit 
perjury. 

Conflicting testimony is more likely to occur if A1 is innocent 
than if he is guilty; so given X occurred, it should increase our proba- 
bility that A1 is innocent. This is the case, since 3/11 > 1/5. 

c (One other method of solution.) Given X occurred, we go to a condi- 
tional space containing only those sample points with attribute X. 
The conditional probabilities for these points are found by scaling up the 

original a priori probabilities by the same constant [l/P(X)] so that 
they add to unity. 

Now, in the conditional space we simply sum the conditional prob- 
abilities of all sample points included in any event to determine the 
conditional probability of that event. 

d To determine whether "Bo tells a lie" and "Ci tells a lie" are independ- 
ent in the original sample space, we need only test P ( Y Z )  P(Y) P(Z). 
Since P(YZ) = 0 but P ( Y )  > 0 and P(Z) > 0, we see that events Y a 

and Z are not independent, in fact they are mutually exclusive. 
To determine whether Y and Z are conditionally independent 

given A or A', we must test P(YZ I A) & P(Y 1 A)P(Z ( A) and 
P(YZ I A') P(Y I Af)P(Z IA'). From the sample space, we find 
that the left-hand side and one term on the right-hand side of each of 
these tests is equal to zero, so events Y and Z are conditionally inde- 
pendent to one who knows whether or not A1 is innocent. 

Since the testimony of the two witnesses depends only on whether 
or not A1 is innocent, this is a reasonable result. If we don't know 
whether or not A1 is innocent, then Y and Z are dependent because the 
occurrence of one of these events would give us partial information 

Iabout Al's innocence or guilt, which would, in turn, change our prob- 1
ability of the occurrence of the other event. I 

I

example 3 When we find it necessary to resort to games of chance for simple 

examples, we shall often use four-sided (tetrahedral) dice to keep our 
problems short. With-a tetrahedral die, one reads the "down" face 
either by noticing which face isn't up or by looking up at  the bottom 
of the die through a glass cocktail table. Suppose that a fair four-sided 
die (with faces labeled 1, 2, 3, 4) is tossed twice and we are told only 
that the product of the resulting two down-face values is less than 7. 

(a) What is the probability that at least one of the face values is a two? 

(b) What is the probability that the sum of the face values is less than 7? 

(c) If we are told that both the product and the sum of the face values 
-

is less than 7 and that at  least one of the face values is a two, 
determine the probability of each possible value of the other face. 



We use the notation 

Event Fi: Value of down face on first throw is equal to i 
Event Sj: Value of down face on second throw is equal to j 

to construct the sample space 

and the conditional probability that the other face value is unity is 2/5; 
the same applies for the event that the other face value is 3, and there 
is a conditional probability of 1/5 that the other face value is also a two. 

For Example 3 we have considered one approach to a simple 
problem which may be solved by several equivalent methods. As we 

, 

become familiar with random variables in the next chapter, we shall 

in which, from the statement of the problem ("fair die"), all 16 sample 
points are equally likely. Given that the product of the down faces 
is less than 7, we produce the appropriate conditional space by elimi- 

employ extensions of the above methods to develop effective techniques 
for the analysis of experiments whose possible outcomes may be 
expressed numerically. 

nating those sample points not included in the conditioning event and 
scaling up the probabilities of the remaining sample points. We 1-8 Bayes' Theorem 

obtain < The relation known as Bayes' theorem results from a particular applica- 
tion of the definition of conditional probability. As long as. the con- 
ditioning events are not of probability zero, we have 

P(AB)  = P(A)P(B I A )  = P(B)P(A IB) 

We wish to apply this relation to the case where the events 
A 1, At, . . . ,ANform a mutually exclusive and collectively exhaustive 
list of events. For this case where the events A1, Az, . . . ,AN form 
an event space, let's consider the universal set and include some other 
event B. 

in which each of the remaining 10 sample points is still an equally 
likely outcome in the conditiond space. 

a There are five sample points in the conditional space which are included 
in the event "-4t least one down face is a two"; so the conditional 
probability of this event is 5 X 0.1 = 0.5. 

b All the outcomes in the conditional space represent experimental out- 
comes for ~ h i c hthe sum of the down-face values is less than 7; so the 
conditional probability of this event is unity. 

c Given all the conditioning events in the problem statement, the result- 
ing conditional sample space is simply 

For the case of interest, assume that we know P(Ai)  and P ( B  I Ai) for 
all 1 _< i 5 N and we wish to determine the P(Ai I B)'s. 

An example of this situat,ion follows: Let A; represent the event 
that a particular apple was grown on farm i. Let B be the event that  



an apple turns blue during the first month of storage. Then the 
quantity P(B / Ai) is the probability that an apple will turn blue during 
the first month of storage given that it was grown on farm i. The 
question of interest: Given an apple which did turn blue during its 
first month of storage, what is the probability i t  came from farm i? 

We return to the problem of determining the P(Ai I B)'s. As 
long as P(B) # 0 and P(Ai) # 0 for i = 1, 2, . . . , N ,  we may sub- 
stitute Ai for A in the above definition of conditional probability to 
write 

= 2 P(AiB) = 2 P(Ai)P(B I Ai) 
i==1 i =  1 

and we substitute the above expression for P(B) into the equation for 
P(Ai I B) to get 

Bayes' theorem: 

Rayes' theorem could also have been obtained directly from our Sam- 
ple space interpretation of conditional probability. Note that, using 
a sequential sample space (shown at  the top of the following page) 
this interpretation would allow us to derive Bayes' theorem [the expres- 
sion for P(Ai ( R)J by inspection. 

A knowledge of Bayes' theorem by name will not affect our 
approach to any problems. However, the theorem is the basis of much 
of the study of statistical inference, and we shall discuss its application 
for .that purpose in the last chapt,er of this book. 

In  the literature, one finds appreciable controversy about the 
"validity" of certain uses of Bayes' theorem. We have learned that 
the theorem is a simple consequence of the definition of conditional 
probability. Its application, of course, must always be made with 
conscious knowledge of just what model of reality the calculations 
represent. The trouble is generated, not by Bayes' theorem, but by 

the attempt to assign a priori probabilities in the sample space for a 
model when one has very little information to assist in  this assignment. 
We'll return to this matter in Chap. 7. 

One last note regarding conditional probability is in order. No 
matter how close to unity the quantity P ( A  I B) may be, it would be 
foolish to conclude from this evidence alone that event B is a "cause" 
of event A. Association and physical causality may be di$erent 
phenomena. If the pr.obability that any man who consults a surgeon 
about lung cancer will pass away soon is nearly unity, few of us would 
conclude "Aha! Lung surgeons are the cause of these deaths!'' 
Sometimes, equally foolish conclusions are made in the name of "sta- 
tistical reasoning." We wish to keep an open mind and develop a 
critical attitude toward physical conclusions based on the mathematical 
analyses of probabilistic models of reality. 

1-9 Enumeration in Event Space: Permutations and Combinations 

Sample spaces and event spaces play a key role in our presentation of 
introductory probability theory. The value of such spaces is that they 



enable one to display events in a mutually exclusive, collectively 
exhaustive form. Most problems of a combinatorial nature, whether 
probabilistic or not, also require a careful listing of events. I t  is the 
purpose of this section to demonstrate how combinatorial problems may 
be formulated effectively in event spaces. 

Given a set of N distinguishable items, one might wonder how 
many distinguishable orderings (or arrangements) may be obtained by 
using these N items K a t  a time. For instance, if the items are the 
four events A, B, C, D, the different arrangements possible, subject to 
the requirement that each arrangement must include exactly two of the 
items, are 

Such arrangements of N distinguishable items, taken K a t  a time, are 
known as K-permutations of the items. In  the above example, we 
have found by enumeration that there are exactly 12 different 2-per- 
mutations of 4 distinguishable items. 

To determine the number of K-permutations which may be 
formed from N distinguishable items, one may consider forming the 
permutations sequentially. One begins by choosing a first item, then 
a second item, etc; For instance, for the above example, this process 
may be shown on a sequential sample space, 

There were N choices for the first member, any such choice results in 
N - 1 possible choices for the second member, and this continues until 
there are N - (K + 1) possible choices for the Kth (and last) member 
of the permutation. Thus we have __= - - 

_I_ - - - 
Number of K-permutations of N distinguishable items - = - 

N! - 
= N ( N -  1)(N - 2 )  (N - K + 1 )  = ( N -  K ) !  N > K  SsS - - 

, -  

A selection of K out of N distinguishable items, without regard 
to ordering, is known as a K-combination. Two K-combinations are 
identical if they both select exactly the same' set of K items out of the 
original list and no attention is paid to the order of the items. For the 
example considered earlier, AB and BA are different permutations, bu t  
both are included in the same combination. 

By setting N = K in the above formula, we note that any com- 
bination containing K distinguishable items includes K! permutations 
of the members of the combination. To determine the number of 
K-combinations which may be formed from N distinguishable items,, 
we need only divide the number of K-permutations by K! to obtain 

- - - - - - - 
Number of K-conlbinations of N distinguishable i t e m  

- = - - - - - 

Many enumeration and probability problems require the orderly 
collection of complex combinatorial events. When one attacks such 
problems in an appropriate sequential event space, the problem is 
reduced to several simple counting problems, .each of which requires 
nothing more than minor (but careful) bookkeeping. The event-space 
approach provides the opportunity to deal only with the collection of 
mutually exclusive events in a collectively exhaustive space. This is 
a powerful technique and, to conclude this section, we note one simple 
example of its application. 

Suppose that awunranked committee of four members is to be 
formed from a group of four males R, S, T, U and five females V, W, X, 
Y, 2. I t  is also specified that R and S cannot be on the same com- 
mittee unless the committee contains a t  least one female. We first 
wish to determine the number of different such committees which may 
be formed. 



We draw an event space for the enumeration of these commit- 
tees. Our only methodology is to decompose the counting problem 
into smaller pieces, always branching out into a mutually exclusive 
decomposition which includes all members of interest. (We may omit 
items which are not relevant to our interests.) 

NOTATION Event X: X is on the committee. 
Event f,: Exactly n females are on the committee. 

Number of ways to select 
the one female member 

Number of ways to select the 
other male member ( T o r  U) 

The following each terminal node is the number of 
acceptable committees associated with the indicated event. For 
instance, for the RS' committees, note that there are as many acceptable 
committees containing R but not S as there are ways of selecting three 
additional members from T, U, V, W, X, Y, Z without regard to the 
order of selection. We have obtained, for the number of acceptable 
committees, 

2 (i) + (i) + (:) (I)+ (i) = 125 possible acceptable committees 

Finally we determine, were the committees selected by lot, the 
probability that the first four names drawn would form an acceptable 
committee. Since.any committee is as likely to be drawn as any other, 

we note that there are 125 acceptable committees out of 

possible results of the draw. Thus there is a probability of 125/126 
that a randomly drawn committee will meet the given constraint. Had 
we decided to solve by counting unacceptable committees and sub- 
tracting from 126, we would have noticed immediately that only one 
draw, RSTU, would be unacceptable. 

The extension of our event-space approach to problems involving 
permutations, such as ranked committees, merely requires that we work 
in a more fine-grained event space. 

P R O B L E M S  

1.01 Use the axioms of the algebra of events to prove the relations 
a U f = +  b A + B = A + A f B + A B C  c A + U = U  

1.02 Use Venn diagrams, the axioms of the algebra of events, or anything 
else to determine which of the following are valid relations in the algebra 
of events for arbitrary events A, B, and C: 
a ( A  + B + C)' = A' + B' + CJ 
b A + B + C = A + AfB + (A + A'B)'C 
c ( A  + B)(At + B') = AB' + A'B + A'BC' 
d AB + AB' + A'B = (A'B')' 

1.03 Fully explain your answers to the following questions: 
a If events A and B are mutually exclusive and collectively exhaustive, 

are A' and B' mutually exclusive? 
b If events A and B are mutually exclusive but not collectively 

exhaustive, are A' and B' collectively exhaustive? 
c If events A and B are collectively exhaustive but not mutually 

exclusive, are A' and B' collectively exhaustive? 

1.04 We desire to investigate the validity of each of four proposed rela- 
tions (called relations 1, 2, 3, and 4) in the algebra of events. Discuss 
what evidence about the validity of the appropriate relation may be 
obtained from each of the following observations. We observe that 
we can: 
a Obtain a valid relation by taking the intersection of each side of 

relation 1with some event El 
b Obtain an invalid relation by taking the intersection of each side 

of relation 2 with some event Ez 
c Obtain a valid relation by taking the union of each side of relation 

3 with some event E3 
d Obtain an invalid relation by taking the complement of each side of 

relation 4 

1.05 I n  a group of exactly 2,000 people, i t  has been reported that there 
are exactly: 
612 people who smoke 
670 people over 25 years of age 
960 people who imbibe ' 

86 smokers who imbibe 
290 imbibers who are over 25 years of age 



-----
= 158 smol~erswho are over 25 years of age------
= 44 people over 25 years of age each of whom both ~1110liesand imbibes---------- 250 people under 25 years of age who neither smokc nor imbibe----------- Determine whether or not this report is consistent. 
--------
- 1.06 Consider the experiment in which a four-sided die (with faces labeled-------- 1, 2, 3, 4) is thrown twice. We use the notation---

For each of the following lists of events, determine whether or 
not the list is (i) nlut.ually exclusive, (ii) collectively exhaustivc, (iii) a 
sample space, (iv) an event space: 
a F1, F2, (Fl + F2)I 
b F ~ S I ,F1S2, F2, Fa, F4 
,c FISI, FxS2, (pi)', (Si + 82)' 
d (Fi + 8x1, (F2+ S2), (F3 + S3), (F4 + 84) 
e (Fi + F2)(S1 + S2 + S3), (Fi + F2 + F3)S4, 

(F3 + F4)(S1 + 8 2  + SS),S41t '4 

1.07 For three tosses of a fair coin, determine the probability of: 
a The sequence H H H  
b The sequence HTH 
c A total result of two heads and orle tail 
d The outcome "More heads than tails" 

Determine also the conditional probabilities for: 
e "SIore heads than tails" given "At least one tail" 
f "RIore heads than tails" given "Less than two tsails" 

1.08 Joe is a fool with probability of 0.6, a thief with probability 0.7, and 
neither with probability 0.25. 
a Determine the probability that he is a fool or a thief but not both. 
b Determine the conditional probability that he is a thief, given that 

he is not a fool. 

1.09 Given P(A) # 0, P(B) # 0, P(A + B) = P(A) + P(B) - 0.1, and 
P(A I B) = 0.2. Either determine the exact values of each of the 
following quantities (if possible), or determine the tightest nuiuerical 
bounds on the value of each: 
aP(ABC)+P(ABC1) b P ( A f I B )  c P ( B )  d P ( A t )  
e P(A + B + A'B') 

-------
siz
-- 1.10 If P(A)  = 0.4, P(Bf) = 0.7, and P(A + I?) = 0.7, deternhc:---- a P(B)  b P(AB) c P(Af I B1) 

I 
J 

$ 
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1.11 A game begins by choosing between dice A and B in some manner 
such that the probability that A is selected is p. The die thus selected 
is then tossed until a white face appears, a t  which time the game is 

1 

concluded. p 
3 ,  

IDie A has 4 red and 2 white faces. Die B has 2 red and 4 white 
faces. After playing this game a great many times, it is observed that 
the probability that a game is concluded in exactly 3 tosses of the 
selected die is &. Determine the value of p. 

1.12 Oscar has lost his dog in either forest A (with a priori probability 
i0.4) er in forest B (with a priori probability 0.6). If the dog is alive 

and not found by the Nth day of the search, it will die that evening 
with probability N/(N 4- 2). 

If the dog is in A (either dead or alive) and Oscar spends a day 
searching for it in A, the conditional probability that he will find thedog 
that day is 0.25. Sinlilarly, if the dog is in B and Oscar spends a day 
looking for it there, he will find the dog that day with probability 0.15. 

The dog cannot go from one forest to the other. Oscar can 
search only in the daytime, and he can travel from one forest to the 
other only at  night. 

All parts of this problem are to be worked separately. 
a In which forest should Oscar look to maximize the probability he 

finds his dog on the first day of the search? 
b Given that Oscar looked in A on the first day but didn't find his dog, 

what is the probability that the dog is in A? 
c If Oscar flips a fair coin to determine where to look on the first day 

and finds the dog on the first day, what is the probability that he 
looked in A? 

d Oscar has decided to look in A for the first two days. What is the 
a priori probability that he will find a live dog for the first timeon the 
second day? 

e Oscar has decided to look in A for the first two days. Given the 
fact that he was unsuccessful on the first day, determine the prob-
ability that he does not find a dead dog on the second day. 

f Oscar finally found his dog on the fourth day of the search. He 
looked in A for the first 3 days and in B on the fourth day. What 
is the probability he found his dog alive? 

g Oscar finally found his dog late on the fourth day of the search. 
The oaly other thing we know is that he looked in A for 2 days and 
and in B for 2 days. What is the probability he found his dog alive? 

1.13 Considering the statement of Prob. 1.12, suppose that Oscar has 
decided to search each day wherever he is most likely to find the dog on 
that day. He quits as soon as he finds the dog. 



- - - 

- - - - 

- - 
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------- a What is the probability that he will find the dog in forest,A?------ b What is the probability that he never gets to look in forest B?-------
=-- c Given that he does get to look in forest B, what is the probability that ------- he finds the dog during his first day of searching there? 
-
--- d Given that he gets to 100li in forest B at least once, \+hat is ,the------- probability that he eventually finds the dog in forest A?--------

1.14 Joe is an astronaut for project Pluto. Rlission success or failure 
depends only on the behavior of three major systems. Joe decides 
the following assumptions are valid and apply to the performance of an 
entire mission: (1) The mission is a failure only if two or more of the 
major systems fail. (2) Syste,m I, the Gronk system, will fail with 
probability 0.1. (3) If at  least one other system fails, no matter how 
this comes about, System 11, the Frab system, will fail with conditional 
probability 0.5. If no other system fails, the Frab system will fail 
with probability 0.1. (4) System 111, the Beer Cooler, fails with 
probability 0.5 if the Gronk system fails. Otherwise, the Beer 
Cooler cannot fail. 
a What is the probabili+y thilt the mission succeeds but that the  Beer 

Cooier fails? 
b What is t.he prob:~bility that all thrcc systetils f:d? 
c Given that more than oue system failed, determine the co~ditiomd 

probabilities that: 
i The Gronk did not fail. 
ii The Beer Cooler failed. 
iii Both the Gronk and the l'rab failed. 

d About the time when Joe was due back on Earth, you overhear a radio 
broadcast about Joe in a very uoisy room. You are riot positive 
whnt the announcer did say, but, based on all available information, 
you decide thnt it is twice as likely that he reported "ALission a 
success'? as that he reported ".\lission n failure." What now is the 
conditional probability (to you) that the Gronk failed? 

1.15 A box contains two fair coins and one biased coin. For the biased 
coin, the probability that any flip will result in a head is +. A1 draws 
two coins from the box, flips each of then1 once, observes an outconle 
of one head and one tail, and returns the coins to the box. Do then 
draws one coin from the box and flips it. The result is a tail. Deter-
mine the probability that neither A1 nor Bo removed the biased coin 
from the box. 

1.16 Joe, the bookie, is attempting to establish the odds on an exhibition 
baseball game. From many years of experience, he has learned that 
his prime colisideration should be the selection of the starting pitcher. 

PROBLEMS 

The Cardinals have only two pitchers, one of whom must start : 
C1, their best pitcher; C2, a worse pitcher. The other team, the 
Yankees, has only three pitchers, one of whom must start: Yl,  their 
best pitcher; Y2, a worse one; Yg, an even worse one. 

By carefully weighting information from various sources, Joe 
has decided, to make the folIowixig assumptions: 
The Yanliees will not &art Y1 if C1 does not start. If C1 does start, 
the Yankees will start Y1 with probability 3. 
The Cardinals are equally likely to start C1 or C2, no matter what the 
Yankees do; 
Y t  will pitch for the Yan1;ees with probability f if Y1 does not pitch, 
no matter what else occurs. 
The probability the Curdinids will win given Ct pitches is r u /  ( m+I) ,  
where 112 is the nunlber (subscript,) of the Yankee pitcher. 
The probability the Yankees will win given Cz pitches is 1/114 where 
1~ is the number of the Yankee pitcher. 
a 'CVhat'is the probability that C2starts? 
b What is the probabi1it.y that the Cardinals will win? 
c Given that Y2does not start, whnt is the probability that the Cardi-

nals will win? 
d If Cz and Y2 start, what is the probability that the Yankees win? 

Die .4 has five olive faces and one lavender face; die B has three 
faces of each of these colors. 11 fair coiri is flipped once. If it falls 
heads, the game coritinues by throwing die A alone; if it falls tails, 
die B alone is used to continue t.he game. However awful their face 
colors may be, it is known that both dice are fair. 
a Determine the probability that the nth throw of the die results in 

olive. 
b Determine the probability that both the nth and (n + 1)st throw 

of the die results in olive. 
c If olive readings result from all the first n throws, determine the 

conditional probability-of an olive outcome on the (n + 1)st toss. 
Interpret your result for large values of n. 

--=-- 1.18 Consider events A, B, and C with P(A) > P(B)  > P(C) > 0.------- Events A and B are mutually exclusive and collectively exhaustive.--
i--
---- Events A and C are independent. Can C arid B be mutually exclusive?-----------
--S 1.19 We are given that the following six relations hold:--------
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Subject to these six conditions, determine, for each of the following 
entries, whether it must be true, it might be true, or it cannot be true: 
a P(ABC) = P(A)P(B)P(C) b P(B I A) = P(B I C )  
c P(AB I C) = P(A I C)P(B I C) 
d P(A + B + C) < P(A) + P(B)  + P(C) 
e If W = ABand V = AC, T T V  = 4 

1.20 Events E', F, and G forin a list of mutually exclusive and collectively 
exhaustive events with P fE )  # 0, P(F) rC 0, and P(G) # 0. Deter-
mine, for each of the following sttltenlents, whether i t  must be true,, 
it might be true, or it cannot be true: 
a E', F', and G' are n~utually exclusive. 
b E", F', and G' are collectively exhaustive. 
c E' and F' are independent.. 
d P(E=') + P(Ft) > 1.0. 
e P(Er + BF' + E'FG') = 1.0. 

1.21 Bo and Ci are the only two people who will enter the Rover Dog 
Food jingle contest. Only one entry is allowed per contestant, and the 
judge (Rover) will declare the 'one wi~iner as soon as he receives a 
suitably inane entry, which may be never. 

Bo writes inane jingles rapidly but poorly. He has probability 
0.7 of subnlitting his entry first. If Ci has not already won the con- 
test, Bo's entry will be declared the winner with probability 0.3. Ci 
writes slowly, but he has a gift for this sort of thing. If Bo has not 
already won the contest by the time of Ci's entry, Ci will be declared 
the winner with probability 0.6. 
a What is the probability that the prize never will be awarded? 
b What is the probability that Bo will win? 
c Given that Bo wins, what is the probability that Ci's entry arrived 

first? 
d What is the probability that the first entry wins the contest? 
e Suppose that the probability that Bo's entry arrived first were P 

instead of 0.7. Can you find a value of P for which "First entry 
wins" and "Second entry does not win" are independent events? 

Each --It- represents one communication link. Link failures are 
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independent, and each link has a probability of 0.5 of being out of 
service. Towns A and B can communicate as long as they are connected 
in the communication network by at  least one path which contains only 
in-service links. Determine, in an efficient manner, the probability 
that A and B can communicate. 

In  the above communication network, link failures are inde- 
pendent, and each link has a probability of failure of p. Consider the 
physical situation before you write anything. A can communicate 
with B as long as they are connected by at  least one path which contains 
only in-service links. 
a Given that exactly five links have failed, determine the probability 

that A can still communicate with B. 
b Given that exactly five links have failed, determine the probability 

that either g or h (but not both) is still operating properly. 
c Given that a, d, and h have failed (but no information about the 

condition of the other links), determine the probability that A can 
communicate with B. 

1.24 The events X,  Y, and Z are defined on the same experiment. For 
each of the conditions below, state whether or not each statement follow- 
ing it must necessarily be true if the condition is true, and give a reason 
for your answer. (Renlember t,hat a simple way to demonstrate that 
a statement is n~t~necessarily true may be to find a counterexample.) 
a If P (X  + Y) = P(X) + P(Y), then: 

i P(XY) = P(X)P(Y) . iii P(Y) = 0 
ii X + Y = X + X f Y  iv  P(XY) = 0 

b If P(XY) = P(X')P(Y) and P(X) # 0, P(Y) # 0, thcn: 
i P(X  I Y) = P(Y 1 X) iii P(XY) # 0 

ii P ( X  + Y) = P(X) + P(Y) - P(XY) , iv  X. # Y unless X = U 
c If P(XY IZ)  = 1, then: 

i P(XY) = 1 iii P(XYZ) = P(Z) 
i i Z = U  i v  P(Xr 12)  = 0 

d If P[(X + Y) 1 Z] = 1 and X # 4, Y # +, Z # 4, then: 
i P ( X Y I Z ) = O  jii P ( X t Y ' ) Z ) = O  
ii P(X  + Y) < 1 iv P(X I Z) < 1 

e Define the events R = X, & = X'Z, T = X'Y'Z'. If the events R, 



PROBLEMS 39 

8, and T are collectivel-y exhaustive, then: 1.28 Companies A, B, C, D, and E each send three delegates to a con- 

i R, S, and T are mutually iii P(XfYZ') = 0 ference. A committee of four delegates, selected by lot, is formed. 

exclusive Determine the probability that: 

ii  P (RST)=P(S )P (R l ' lS )  i v P [ ( R + S + T ) I X Y Z ] = l  a Company A is not represented on the committee. 
b Company A has exactly one representative on the committee. 

1.25 Only at  midnight may :L mouse go from either of two rooms to the c Neither company A nor company E is represented on the committee. 

other. Each midnight he stays i r i  the same room with probability 0.9, 
j 

or he goes to the other room with probabi1it.y 0.1. We can't observe 1.29 A box contains N items, K of which are defective. A san~ple of 

the mouse directly, so we use the reports of an unreliable observer, who LIIitems is drawn from the box a t  random. What is the probability 

each day reports correctly with probability 0.7 and incorrectly with that the sample includes a t  least one defective item if the sample is 

probabi1it.y0.3. 011 day 0, we installed the niousc in room 1. We use t.aken: 

the notation : a With replacement 
IEvent &.(n.) : Observer reports mouse in room k on d:ty tt .  b Without replacement 

Event Sk(n): Jlouse is i r i  room 1; on day n. 
a What is the a priori probabi1it.y that on day 2 we shall receive the 1.30 The Jones family household includes Jlr .  and Mrs. Jones, four chil- 

report R2(2)? dren, two cats, mid three dogs. Every six hours there is a Jones 

b If we receive the reports R1(l) and R2(2), what is the conditional family stroll. The rules for a Jones family stroll are: 
Exactly five things (people + dogs + cats) go or1 each stroll. probability that the observer has told the t.ruth on both days? 

c If we receive the reports Rl(l)  and R2(2), what is the conditional Each stroll must include at  least one parent arid a t  least one pet. 

probnbilit,~of the event S2(2)? Would IVC then believe the observer Therc (mi never be a dog arid :L vat on the same stroll unless both 

on the second day? Explain. parents go. 
All acceptable stroll groupings are equally likely. d Determine the conditional probability P[R2(2)I Rl(l)], and compare 

Given that exactly one parent went on t.he 6 P.M. stroll, what isit with the conditional probability P[S2(2) / Sl(l)] .  
the probability that Rover, the oldest dog, also went? , 

1.26 a The Pogo Thorhead rocket will fuxict.ion properly only if all five 
of its major systems operate simultaneously. The systems are labeled 
A,  B, C, D,and A'. System failures are independent, and each systenl 
has a probability of failure of 1/3. Given that the Thorhead fails, 
determine the probability that systcn! A is sol el^ a t  fault. 
b The Pogo Thorhead I1 is an improved configuration using the same 

five systems, each still with a probability of failure of 1/3. The 
Thorhead I1 will fail if system A fails or if (at least) any two systems 
fail. Alas, the Thorhead I1 also fails. Determine the probability 
that system A is solely a t  fault. 

1.27 The individual shoes from eight pairs, each pair a different style, 
have been put into a barrel. For $1, a customer may randomly draw 
and keep two shoes from the barrel. Two successive customers do 
this. What is the probability that a t  least one customer obtains two 
shoes from the same pair? How much would an individual customer 
improve his chances of getting a t  least one complete pair by investing 
$2 to be allowed to draw and keep four shoes? (Some combinatorial 
problems are quite trying. Consider, if you dare, the solution to this 
problem for eight custon~crs instead of two.) 


