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CHAPTER T W O  

random 
variables 

Often we have reasons to associate one or more numbers (in addition 
to probabilities) with each possible outcome of an experiment. Such 
numbers might correspond, for instance, to the cost to us of each experi- 
mental outcome, the amount of rainfall during a particular month, or 
the height and weight of the next football player we meet. 

This chapter extends arid specializes our earlier work to develop 
effective methods for the study of experiments whose outcomes may be 
described numerically. 



2-1 Random Variables and Their Event Spaces 

For t'he study of experinlents whose outconles may be specified numeri- 
cally, we find it useful to introduce the following definition: 

A random varzhble is defined by a function which assigns a value of the ESZ 
rarldonl variable to each sample point in the sample space of an 
experiment. 

Each performance of the experiment is said to generate an experimental 
calzce of the randonl variable. This experinlental value of the random 
variable is equal to the value of the randonl variable assigned to the 
sample point which corresponds t-o the resulting experimental outcome. 

Consider the following example, which will be referred to in 
several sections of this chapter. Our experiment consists of three 
independent flips of a fair coin. We again use the notation 

Event : (F!:,"] on the nth Hip 

We may define any number of random variables on the sample space 
of this experiment. We choose the following definitions for two ran- 
dom variables, h and r :  
h = total number of heads resulting'from the three flips 
r *  = 1cngt.h of Iongest run resulting from the three flips (a run is a set of 

successive flips all of which have the same outcome) 

We now prepare a fully labeled sequential sample space for this 
experiment. We include the branch traversal conditional probabilities! 
t,he probability of each experinlental outcon~e, and the values of random 
variables h and 1. assigwd to each salnple point. The resulting sample 
spaw is shown at  the top of the following page. 

If this experiment were performed once and the experimental 
out.conle were the event H1T2T3, we would say that, for this per- 
formance of the experiment, the resulting experimental values of ran- 
dom variables h and I .  were 1 and 2, respectively. 

Although we may require the full sample space to describe the 
dehiled probabilistic structure of an experiment, it may be that our 
only practical interest in each performance of the experiment will relate 
to t,he resulting experimental values of one or more random variables. 

RANDOM VARIABLES AND THEIR EVENT 

Sample 
points 
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" q H 3  
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When this is the case, we may prefer to work in an event space which 
distinguishes among outcomes only in terms of the possible experi- 
mental values of the random variables of interest. Let's consider this 
for the above example. 

Suppose that our only interest in a performance of the experi- 
ment has to do with the resulting experimental value of random varia- 
ble h. We might find it desirable to work with this variable in an 
event space of the form 

The four event points marked along the ho axis form a mutually exclu- 
sive collectively exhaustive listing of all possible experimental outcomes. 
The event point at  any h corresponds to the event "The experimental 
value of random variable h generated on a performance of the experi- 
ment is equal to ho," or, in other words, "On a performance of the 
experiment, random variable h takes on experimental value ho." 

Similarly, if our concern with each performance of the experi- 
ment depended only upon the resulting experimental values of random 
variables h and r,  a simple event space would be 
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to all possible experiment.al values of the random variable. One such 
event space could be 

This event point represents the event 
"exactly two heads resulted from the 
three flips and no pair of consecutive 
flips had the same outcomen Each point in this event space corresponds to the event "On a per- 

formance of the experiment, the resulting experimental value of random 
variable x is equal to the indicated value of xo." 

We next define a function on this event space which assigns a 

An event point in this space with coordinates ho and 1.0 corresponds to 
the event "On a performance of the experiment, random variables h and 
1, take on, respectively, experimental values ho and T ~ . "  The proba,- 

probability to each event point. The function p,(xo) is known as the 
probability mass function (PAIF)  for discrete random variable x, 
defined by 

= 
bility assignment for each of these six event points may, of course, be --
obtained by collecting these events and their probabilities in the origi- 
nal sequential sample space. 

The random variables discussed in our example could take on 

p,(xo) = probability that the experimental value of random variable 
x obt.ained on a performance of the experiment is equal to xo 

Z Z S  
ZZZ-= -only experimental values selected from a set of discrete numbers. Such = 

random variables are known as discrete random variables. Random 
variables of another type, known as continuous random variables, may 
take on experimental values anywhere within continuous ranges. 
Examples of continuous random variables are the exact instantaneous 

We often present the probability mass function as a bar graph drawn 
over an event space for the random variable. One possible PMF is 
sketched below: 

voltage of a noise signal and the precise reading after a spin of an 
infinitely finely calibrated wheel of fortune (as in the last example of 
Sec. 1-2). 

Formally, the distinction between discrete and continuous ran- 
dom variables can be avoided. Rut the development of our topics is 
easier to visualize if we first become familiar with matters with regard to  
discrete random variables and later extend our coverage to  the con-
tinuous case. Our discussions through Sec. 2-8 deal only with the 
discrete case, and Sec. 2-9 begins the extension to the continuous case. Since there must be some value of random variable x associated with 

every sample point, we must have 1 

2-2 The Probability Mass Function 

We have learned that a random variable is d-efined by a function which 
assigns a value of that random variable to each sample point. These and, of course, from the axioms of probability theory we also have 

assigned values of the random variable are said to represent its possible 
experimental values. Each performance of the experiment generates 

0 _< p,(xo) 5 1 for all values of xo 

an experimental value of the random variable. For many purposes, Note that the argument of a PAIF is a dummy variable, and the 
we shall find the resulting experimental value of a random variable PAIF for random variable x could also be written as p,(y), p , ( f= ,  ), or, 
to be an adequate characterization of the experimental outcome. as some people prefer, p , ( - ) .  We shall generally use the notation p,(xo) 

In  the previous section, we indicated the form of a simple event for ,z l'A117. However, when another notation offers advantages of 
space for dealing with a single discrete random variable. To work with clarity or brevity for the detailed study of a particular process, we shall 
a random variable x ,  \\;e mark, on an xo axis, the points corresponding adopt it for that purpose. 
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For an example of the I'SiF for a random variable, let's return 
to the experiment of three flips of a fair coin, introduced in the previous 
section. U7emay go back to the origirlal sample space of that experi-
ment to collect ph(hO),the P11F for the total number of heads resulting 
from the three flips. We obtain 

p, (ho) = probability mass 
function for random 
variable h 

2-3 Compound Probability Mass Functions 

We wish to consider situat.ionsin which values of more than one rand on^ 
variable are assigned to each point in  the sample space of an experiment. 
Our discussion will be for two discrete random variables, but the exten-
sion to more than two is apparent. 

For a performance of an experiment, t,heprobability that random, 
variable x will take on experimental value xo and random variable y 
will take on experimental value y 0 may be determined in sample space 
by summing the probabilities of each sample point which has this com-
pound attribute. To designate the probability assignment in an xo,yo 
event space, we extend our previous work to define the compound (or 
joint) PSIFfor two randomvariables x and y, -


€----= -
p,,,(xo,yo) = probability that the experimental values of random varin- ZiSZ!E= 

bles x and y obtained on a performance of the experi- SEE --merit are equal to xo and 1 ~ 0 ,respectively ----
A picture of this function would have the possible event points marlied 
on an zo,yo coordinate system with each value of p,,,(xo, yo)indicated 
as a bar perpendicular to the xo,yoplane above eachevent point. [We 
use the word event point here since each possible (xo,yo) point might 
represent the union of several sample points in the finest-grain descrip-
tion of the experiment.] 

By considering a.n xo,yoevent space and recalling t,hat an event 
space is a mutually exclusive, collectively exhaustive listing of all pos-
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sible experimental outconles, me see that the following relat,ions hold: 

I n  situations where we are concerned with more than one random varia-
ble, the PlIF 's  for single random variables, such as p,(xo), are referred 
to as marginal PMF's. No matter how many random variables may 
be defined on the sample space of the experiment, this function p,(xo) 
always has t,he same physical interpretation. For instance, p,(2) is 
the probability that the experimental value of discrete random variable 
z resulting from a performance of the experiment will be equal to  2. 

Let's return to the example of three flips of a fair coin in Sec. 
2-1 to obtain the compound P l I F  for random variables h (number of 
heads) and r (length of longest run). By collecting the events of 
interest and their probabilities from the sequential sample space in 
Sec. 2-1, me obtain pfL,,(ho,?.o).We indicate the value of p,b,r(hO,f*O) 
associated with each event by writing it beside the appropriate event 
point. 

The probability of any event described in terms of the experi-
mental values of random variables h and may bc found easily in this 
event space once p,,,,(ho,ro) has been determined. 

Vor instance, we may obtain the marginal l'llli's, ph(hO) and 
~ ~ ( l ' ~ ) ,simply by collecting the probabilities of the appropriate events 
in the ho,ro sample space. 

-)-- Event: experimental value of r is equal b 3 

cn)+----Event: experimental value of r is equal to 2(=.)- Event: experimental value of r is equal to 1 



The reader can check that the ibove procedure and a similar operation 
for random variable h lead to the marginal PAIF's 

I t  is important to note that, in general, there is no wgy to go back 
from the marginal PbIF's to determine the compound PM1'. 

2-4 Conditional Probability Mass Functions 

Our interpretation of conditional probability in Chap. 1 rioted that 
conditioning a sample space does one of two things to the probability 
of each finest-grain event. If an event does not have the attribute of 
the conditioning event., the conditional probability of that event is set 
to zero. For all finest-grain events having the attribute of the condi- 
t ioriing event, the conditional probability associated with each such 
everit is equal to its original probability scaled up by a constant [ l / P ( A ) ,  
where A is the conditioning event] such that the sum of the conditional 
probabilities in the conditional sample space is unity. We can use the 
same concepts in an event space, as long as we can answer either "yes" 
or "no" for each event point to the question "Does this event have the 
attribute of the conditioning event?" Difficulty would arise only when 
the conditioning event was of finer grain than the event space. This 
matter was discussed near the end of Sec. 1-4. 

When we consider a discrete random variable taking on a partic- 
ular experimental value as a result of a performance of an experiment, 
this is simply an event like those we denoted earlier as A, B, or anything 
else and all our not,ions of conditional probability are carried over to the 
discussion of discrete random variables. We define the conditional 

- d = = - - 
pZl,(xo I yo) = conditional probability that the experimental value of 

random variable x is so, given that, on the same perfor- 
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mance of the experiment, the experimental value of ran- SZE - 
dom variable y is yo - - - - - - - - = - - 

Fron~  the definition of conditiorlal probability, there follows 

pzJxolyo) and, similarly, pylz(yo I zo) = pza(xO)~O) P.lv("0 I YO) = py(yo) ~ 4 x 0 )  

As was the case in the previous -chapter, the conditional probabilities 
are not defined for the case where the conditioning event is of proba- 
.bility zero. 

Writing these definitions another way, we have 

Notice that, in general, the marginal PJlF's p,(xo). and p,(yo) do not 
specify pr,,(so,yo) just as, in general, p(A) and p(B) do not specify 
P(AB). 

Finally, we need a notation for a conditional joint probability 
mass funct.ion where t,hc conditioning event is other than an observed 
experirnent,al value of one of the random variables. We shall use 
pr,l,lA(xO,~O I A) to denote the conditional compound PM 1: for random 
variables x and givctn event A.  This is, by the definition of condi- 
tioxid probability, 

We return to the ho,ro event space of the previous sections and 
it,s compound PAIF in order to obtain some experience with conditional 
probability mass functions 

; 
h,  r, event space including 
value of joint PMF for each 
event point 

* L  .1 
8 8 

We begin by finding the conditional I'MF for random variable r, the 
length of the longest run obtained in three flips, given that the experi- 
mental value of h, the number of heads, is equal to 2. Thus, we wish to 
find pr lh(rO ( 2). Only two of the event.points in the original ho,ro 
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event space have the attribute of the conditioning everit (ho = 2), and directly condifiori an event space by an arbitrary event defined on the 

the relative likelihood of these points must remain the same in the experiment. For our example, if we were told that the second flip 

conditional event space. Either by direct use of the definition or from resulted in heads, our sinlple conditioning argument cannot be applied 

our reasoning in sample space, there results in an ho,roevent space because we can't answer uniquely "yes" or "no" 
as to whether or not each event point has this attribute. The condi-
tioning requires inforn~ationwhich appeared in the sequential sample 
space of Sec*.2-1 but which is no longer available in an h0,l.o event space. 

1 
ro " 1 

p r l h ~ r o 1 2 ) = ~ r o = 2  2-5 lndependence and Conditional lndependence of Random Variables0 for all other 

values of ro I11 Sec. 1-6 we obt.ained our definition of the independence of two 
events by st,ating formally an intuitive notion of independence. For 
two random variables to be independent,,we sha.11require that no possi-
ble experimental value of one randont variable be able to give us any 

Had the conditioning event bee11that the experimental value of h were new infornlation about the probability of any experimental value of the 
equal to 3, this would specify t,he experiment,al value of r for this other random variable. A formti1 statement of tlhisnotion of the inde-
experiment, because there is only one possible ho,ro event point with pendence of two rnndonl variables is 
ho = 3. The resulting conditional 1'1117 would, of course, be 

= 
_is__ --
- LIlandont variables z and ?/ are defined to be independent if and only --

i f  p,&o I so) = p,(yo) for all possible values of xo and go. 
= 
-_I_-=---
= 

From t.he definition of the conditional 1'1 f k"s, as long as the 
cor~ditioningevent is of nonzero probability, we nuy  always write 

Suppose that we wish to conditiori the contpound PAIF in the and, substituting the above definition of independence into this equa-
ho,roevent space by the event that the experimental values of k and r tion, we find that pyl.(yo1 .xo) = py(yo) for all zo,yo requires that 

thus, one equivnlent definition ofresulting from a performance of the experiment are not equal. I n  p,l,l(.ro ( 00) = p,(xo) for all X O , ~ O ;  
going to the appropriate conditional event space and allocation of con- the indepcndcrlcc condition would he to state that. rnndoin variables x 

ditional probability, we remove event points incompatible with the and y are i~idcpendcntif aud o d y  if p,,,(xo,go) = p,(.ro)p&o) for all 
conditioning event and renormalize to obtain TO,yo. 

We define any number of random variables to be irzutually inde-
pendent if the compound 1'111: for all the randoni variables factors 
into the product of all the marginal 1'1II"s for all arguments of the 
compound 1'11 1:. 

Conditional horo If we let A represent this con - I t  is also converlient to define t,henotion of conditional indepen-
event space given "ex - ditioning event, the numbers dence. One of several equivalent definitions is
perimental values of beside each event point are 
hand r are not equaln 1 -----

Random variables x and y are defined to be conditionally independent ESS-
given event A [with P(A)  # 0] if and only if -------Finally, we can note one reasonable example of a phenomenon P~,,IA(%YO I A ) ~ u ~ ~ ( ~ o  for all (xo,yo) ZEZEI A) = PXIA(XO I A)

which was mentioned earlier. We have stated that we cannot always 



Of course, the previous unconditional definition niay be obtained by 
setting A = U in the conditional definition. The function pXl~(xo  ( A) 
is referred to as the conditional warginal PSIF for random variable x 
given that the experimental outconle on the performance of the experi- 
ment had attribute A.  

We shall learn later that the definition of independence has 
implications beyond the. obvious one here. In studying situations 
involving several raridoni variables, it will normally be the case that, if 
the random variables are mutually independent, t.he analysis will be 
great,ly simplified and several powerful theorems will apply. 

The type of independence we have defined in this section is oft.en 
referred to as true, or statistical, independence of randonl variables. 
These words are used to differentiate between this complete form of 
independence and a condition known as linear independence. The 
latter will be defined in Sec. 2-7. 

The reader may wish to use our three-flip experiment and its 
ho,ro event space to verify that, although h and 1, are clearly not inde- 
pendent in their original event space, they are conditionally independent 
given that the longest run was shorter than three flips. 

2-6 Functions of Random Variables 

A function of some randonl variables is just what tjhe name indicates- 
i t  is a function whose experiment,al value is determined by the experi- 
mentnl values of the random variables. For inst.ance, let h and again 
be the number of heads and the length of the longest run for three flips 
of a fair coin. Some functions of these random variables are 

~(h,?,)= ' h2 w(h,r) = I h - 1' I x(h,r). = e-h log (r cos h) 2-7 

and, of course, h and r. 
Functions of randonl variables are thus new random variables 

themselves. The expcrimental values of these new random variables 
nmy be displayed in the event space of the original random variables, 
for instance, by adding some additional markers beside the event points. 
Once this is done, it is a simple mather to assemble the PJIF for a 
function of the original random variables. 

For example, let random variable w be defined by w = Ih - 1.1. 

We'll write the value of w assigned to each event point in a box beside 
the point in the ho,ro event space, 
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and then working in the above event space, we can rapidly collect 
, p,(wo), to obtain 

Expectation and ~onditio'nal Expectation 

Let x be a random variable, and let g(x) be any single-valued function 
of its argument. Then g(x) is a function of a random variable and is 
itself R random variable. UTe define E[g (x)], the expectation, or expected 
value, of this function of random variable x, to be , 

,
and we also define E[g(x) I A], the conditional expectation of g(x) given 
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As usual, this definition for the conditional case includes the uncondi- 
tional case (obt,ained by setting A equal to the universal event.). 

Consider the event-space interpretation of the definition of 
E[g(s)]in an xo event space. For each event point so, we multiply 
g(x0) by the probability of the event point representing that experi- 
mental outcome, and then we sum all such products. Thus, the 
expected value of g(x) is simply the weighted sum of all possible experi- 
mental values of g(x), each weighted by its probability of occurrence 
on a performance of the experiment. We might anticipate a close 
relationship between E[g(x)] and the average of the experimental values 
of g(x) generated by many performances of the experiment. This type 
of relation will be studied in the last two chapters of this book. 

Certain cases of g(z) give rise to expectations of frequent interest 
and these expectations have their own names. 

The quantity is known as the nth moment, and the quantity (x - 2)" 
is known as the nth central moment of random variable x. 

Often we desire a few simple parameters. to characterize the 
Ph3F for a particular random variable. Two choices which have both 
intuitive appeal and physical significance are the expected value and 
the second central moment of the random variable. We shall discuss 
the intuitive interpretation of these quantities here. Their physical 
significance will become apparent in our later work on limit theorems 
and statistics. 

The &st moment (or expected value or mean value) of random 
variable x is given by 

and if we picture a PAIF bar graph for random variable .7: to be com- 
posed of broomsticlis on a weight.less axis, we may say that E(x)  
specifies the location of the c e n t e ~of mass of t,he PMF. 

The second central moment E { [x - E (x)121 is a measure of the 
second power of the sprea.d of the PMF for random variable x about its 
expected value. The second central moment of random variable x is 
known as its va?iance  and is denoted by uZ2. The square root of the 
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variance, c,, is 1;oomn as the standard deviation of random variable x 
and may be considered to be one characterization of the spread of a 
I'MF about E ( x ) .  Herc arc a few 1'JI F's for random variable x, cach 
with the samc mean but different standard deviations. 

E ( x )  = 0.0 
a: = 2.50 
cr, - 1.58

I 

A conditional central moment is a measure of the nth power of 
t,he spread of a conditional PJIF for a random variable about its con-
ditional mean. For instance, given that the experinwntal outconw had 
attribute A ,  the co~rditional variance of ratidom variable x, o:lA, is 

For functions of several random variables, me again define expec-
t,at,ion to be the weighted sum of all possible experimental values of the 
function, with each such value weighted by the probability of its 
occurrence on a performance of the experiment. Let g(x,y) be a 
single-valued function of random variables x and y. By now me are 
familiar enough with the ideas involved to realize that a definition of 
E[g(x,g) I A]:  the conditional expectation of g(x,y), will include the 
definition for t,he unconditional case. 

We should remember that in order to determine the expectation 
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of g(x) [or of g(x,y) or of any function of g(x,y)] it is not necessary that 
2-8 Examples Involving Discrete Random Variableswe first determine the PMF p,(go). The calculation of E[g(x,y)] can 

always be carried out directly in the xo,go event space (see Prob. 2.10). We have dealt with only one example related to our study,of discrete 
We wish tJoestablish some definitions and results regarding the random variables. We now work out some more detailed examples. 

expected values of suns  and products of random variables. From the 
definition of the expectat ion of a function of several random variables, example 1 A biased four-sided die is rolled once. Random variable hi is defined 
we may write to be the down-face value and is described by the PhiIF,{rOf o r ~ ~ = 1 , 2 , 3 , 4PN(NO)= 10 

for all other values of No 

Based on the outcome of this roll, a coin is supplied for which, on any 
flip, the probability of an outcome of heads is (N + 1) /2N.  The coin 
is flipped once, and the outcome of this flip completes the experiment. 

Determine : 

The expected value of the sum qf two random variables is always (a) The expected value and variance of discrete random variable N. 

equal to the sum of their expected values. This holds with no restrictions (b) The conditional PMF, conditional expected value, and conditional 

on the random variables, which may, of course, be functions of other variahce for random variable N given that the coin came up heads. 

random variables. The reader should, for instance, be able to use this (c) If we define the events 

result directly in the definition of t.he variance of rand on^ variable x Event A : Value of down face on die roll is either 1 or 4 
Event H: Outcome of coin flip is headsto show 
are the events A and H independent? 

We'll begin by drawing a sequentid sample space for the experi-
Now, consider the expected value of the product xp, ment, labeling all branches with the appropriate branch-traversal 

probabilities, and collecting some relevant information. 

I n  general, we can carry this operation no further without some knowl-
edge about p,,,(xo,yo). Clearly, if x and y are independent, the above 
expression will factor to yield the result E(xy) = E(x)E(y). Even if 
x and y are not independent, it is still possible that the numerical result 
would satisfy this condition. --

il_ -
If E(xy) = E(x)E(y), random variables x and y are said to be linearly ZZSS -
independent. (Truly independent random variables will always satisfy SEiE-

-this condition.) ___1 

-__. 

An important expectation, the covariance of two random vari-
ables, is introduced in Prob. 2.33. Chapter 3 will deal almost exclu~ 
sively with the properties of some other useful expected values, the 
transforms of PMF's. We shall also have much more to say about 
expected values when we consider limit theorems and statistics in 
Chaps. 6 and 7. 



a Applying the definitious of nlean aud vsrimce to random variable N, 
described by the Pi\IIc pN(No) given above, we have 

b Given that event H did occur on this performance of the experiment, 
we may condition the above space by event H by removing all points 
with attribute T and scaling up the probabilities of all remaining events 
by multiplying by l / I > ( H )= 10/7. This results in the four-point 
conditional event space shown below. To the right of this c*onditional 
event space we present the resulting conditional PAIF for random vari- 
able N ,  given that event H did occur. 

Applying the definitions of the mean and variance in this conditional 
event space, we have 

c We wish to test P(AH) 2 P ( A )P(H) , and we have already collected 
each of these t,hree quantities in the sample space for the experiment. 

So t,he events A and H are independent. 
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example 2 Patrolman G. R. Aft of the local constabulary starts each day by 
deciding how many parking ticliets he will award that day. For any 

, day, the probability that he decides to give exactly K tickets is given 
by the PJIF 

for KO= 1, 2, 3, or 4 

for all other values of Ko 

But the more tickets he gives, the less time he has to assist old ladies 
at street crossings. . Given that he has decided to have a K-ticket day, 
the conditional probability that he will also help exactly I, old ladies 
cross the street that day is given by 

His daily salary S is computed according to the formula 

S = 2K + L (dollars) 

Before we answer some questions about Officer Aft, we should 
be sure that we understand the above stat.ements. For instance, on a 
day when Officer Aft has decided to give two tickets, the conditional 
PAIF states that he is equally likely to help one, two, or three old 
ladies. Similarly, on a day when he has decided to give exactly four 
tickets, i t  is certain that he will help exactly one old lady cross the 
street. 
(a) Determine the marginal PJIF'~L(I ,~ ) .This marginal PMF tells 

us the probability that Officer Aft will assist exactly Lo old ladies 
on any day. Det.ermine also the expected value of random vari- 
able L. 

(b) Random variable S,Officer Aft's salary on any given day, is a func-
tion of random variables K and L. Determine the expected value 
of the quantity S(L, K). 

(c) Given that, on the day of interest, Officer Aft earned a t  least $6, 
determine the conditional marginal PMF for random variable K, 
the number of traffic tickets he awarded on that particular day. 

(d) We define 
Event A : Yesterday he gave a total of one or two parking tickets. 
Event B: Yesterday he assisted a total of one or two old ladies. 
Determine whether or not random variables K and L are condi- 
tionally independent given event AB. 

From the statement of the example we can obtain a sample space 
and the assignment of a priori probability measure for the experiment. 
We could begin with a sequential picture of the experiment such as 



= is easily performed in oura The ealculation ~ L ( L ~ )  P ~ , ~ ( L ~ , K ~ )  
KO 


event space to obtain 

or we might work directly in a Ko,TJo coordinate event space with the 
probability assignment PK,L(K~,TJ~) determined by 

5 - K O  1 
if KO = 1, 2 , 3 , 4  and 1 5 LO< 5 - KO 

otherwise 

if Ko = 1,2 ,  3 , 4  and 1 5 Lo < 5 - KO 
otherwise 

We have established that each 
of the ten possible event points 
has an a priori probability of 0.1 
of representing the outcome of 
any particular day in the life 
of Officer G. R. Aft 

To find the expectation of I,,we could multiply the experimental value 
of IJcorresponding to each sample point by the probability measure 
assigned to that point and suni these products. But since we already 
have ~ L ( L ~ ) ,  i t  is quicker to work in the event space for random variable 
L to obtain 

Akhough it has happened in this example, we should note that there is 
no reason whatever why the expected value of a random variable need 
be equal to a possible experimental value of that random variable. 

We can simply multiply theb E(S)  = 2 2 (2K0 + h~)p~,~(KO,TJo) .  
K O  Lo 


experinlental value of S corresponding to each event point by the 
probability assignment of that event point. Let's write the corre- 
sponding experimental value of S beside each event point and then 
con~puteE'(S). . 



E ( S ) = y ' & 3 + 4 + 5 + 6 + 5 + 6 + 7 + 7 + 8 + 9 ) = $ 6  

c Given that Officer Aft earned at  least $G, me can easily condition the 
above event space to get the conditional event space (still with the 
experimental values of S written beside the event points representing 
the remaining possible experimental outcomes) 

Conditional KO Lo 
sample space given 
experimental outcome 
had attribute Sr6.0 

Since the relative likelihood 
e7 of all event points included 

in the conditioning event 

.6 * 8  
can't change, these remain. 
ing six event points are still 
equally probable 

* 7  e g  

Thus, by using the notation Event C: S 2 0, we have 

Recall that we car1 use this simple interpretation of conditional prob- 
ability only if the event space to which we wish to apply it is of fine 

y 
enough'grain to allow us to classify each event point as being wholly in 
C or being wholly in C'. 

d There are only four (equally likely) event points in the conditional 
Ko,Lo event space given that the experimental outcome has attribute 
AB. 

Conditional KO Lo event 
space given experimental 
outcome has attribute AB 't 

We wish to check 

pn.rlrn(Ko,~o I AB) L PK~AO(KO I AB)PL,AB(Lo ( AB) for all Ko,Lo 

Each of these three PJIF's is found from the conditional Ko,Lo event 
space presented above. 

The definition of conditional independence is found to be satisfied, and 
we conclude that random variables K and L, which were not inde- 
pendent in the original sample space, are conditionally independent 
given that the experimental outcome has attribute AB.  Thus, for 
instance, given that A B has occurred, the conditional marginal PDF 
of vari:tble I; will be un,zffct*ted by the experimental value of random 
variable K. 

In this text, the single word independence applied to random 
variables is a1w:~ys used to denote statistical independence. 

2-9 A Brief Introduction to the Unit-impulse Function 

To prepare for a general discussion of continuous random variables, 
i t  is desirable that we become familiar with some properties of the 
unit-in~pulse function. Our introduction to this function, though 
adequate for our purposes, will lack certain details required to deal 
with more advanced matters. 

The unit-impulse functio~l po(xo - a) is a function of $0 which 
is equal to infinity a t  xo = a and which is equal to zero for all other 
values of xo. Thc integral of po(x0 - .  a) over any interval which 
includes the point where the unit inzpulse is nonzero is equal to unity. 

- a) is to consider the One way to obtain the unit impulse p o ( z ~  
Zi~uit, as A goes to zero, of 



which, after the limit is taken, is norn~ally represented as 

where the scale height of the impulse is irrelevant and the total area 
under the impulse function is written beside the arrowhead. The 
integral of the unit-impulse function, 

1;:- ro(xo - a )  ~ X O  

is a function known as the unit-step function and written as p-l(xo - a). 

Thus an in~pulse may be used to represent the derivative of a function 
at  a point where the function has a vertical discontinuity. 

As long as a function g(xO) does not have a discontinuity a t  
xo = a, the integral 

over any interval which includes xo = a is simply g(a). This results 
from the fact that, over the very small range where the impulse is non- 
zero, g(xo) may be considered to be constant, equal to g(a), and factored 
out of the integral. 

2-10 The Probability Density Function for a Continuous Random Variable 

We wish to extend our previous work to include the analysis of situa- 
tions involving random variables whose experimental values may fall 
anywhere within continuous ranges. Some examples of such con-
tinuous random variables have already occurred in Secs. 1-2 and 2-1. 

The assignment of probability measure to continuous sample and 
everit, spaces will be given by a probability density function (PDF). Let 
us begin by considering a single continuous random variable x whose 
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event space is the real line from xo = - a, to xo = a,. We define the 
PDF for random variable x, f,(xo), by 

C_ -__. 
b -

Prob(a < x 5 b) = 1f,(xo) dxo 

__Z 

C__I 
C__ 

Thus, fz(xo) is a density of probability measure on the event space 
(the xo axis) for random variable .x. 

Any event can be collected by selecting those parts of the s o  axis 
which have the attribute of the event. For instance, 

,-The event: Ix I <  1 

[The event: x < 1 

The probability of any event is found by evaluating the integral of 
fz(xo) over those parts of the event space included in the event. 

f, ( x o )  

This area is equal to the probability 
of the ex~erimental outcome iXI<1 

This area is equal to the probabilityT/ of the experimental outcome x <j 

Should the PDF f,(xo) contain impulses a t  either a or b, the 
b 

integral fz(xo) dxo is defined to include the area of any impulse at  the 

upper limit but not the area of any impulse at  the lower limit. Note 
that this convention is determined by our choice of the inequality 
signs in the definition of f,(xo). 

Based on our understanding of event space and probability 
measure, me note that any PDF  must have the following properties: 



- - - - - 
- - 
___ 

If we wish to reason in terms of the probability of events (of nonzero 
probability), it is important to realize that it is not the P D F  itself, 
but rather its integral over regions of the event space, which has this 
interpretation. As a matter of notation, we shall always use fz(xo) 
for PDF's and reserve the letter p for denoting the probability of events. 
This is consistent with our use of pz(xo)for a PMF. 

Note that, unless the P D F  happens to have an impulse a t  an 
experimental value of a random variable, the probability assignment to 
any single exact experimental value of a continuous random variable 
is zero. [The integral of a finitef,(xo) over an interval of zero width is 
equal to zero.] This doesn't mean that every particular precise experi-
mental value is an impossible outcome, but rather that such an event of 
probability zero is one of an infinite number of possible outcomes. 

We next define the cumulative distribution function (CDF) for 
random variable x, pz5(x0), by -= 

==r== 
2 0  -

px5(xo) = Prob(x < xO)= /-rn f & ~ )dxo SES -
-
-
The function pxl(xo) denotes the probability that, on any particular 
performance of the experiment, the resulting experimental value of 
random variable x will be less than or equal to xo. Note the following 
properties of the CDF: 

The CDF will be especially useful for some of our work with continuous 
random variables. For a discrete random variable, the CDF is dis-
continuous and therefore, to some tastes, not differentiable. For our 
purposes, we have defined the derivative of the CDF a t  such a dis-
continuity to be an impulse of infinite height, zero width, and area 
equal to the discontinuity. 

Let's consider an experiment involving a random variable x 
defined in the following manner: A fair coin is flipped once. If the 
outcome is heads, the experimental value of x is to be 0.2. If the out-
come is tails, the experimental value of x is obtained by one spin of a 
fair, infinitely finely calibrated wheel of fortune whose range is from 
zero to unity. This gives rise to the P D F  

The scale height of the impulse 
0.5 in the diagram is irrelevant. The 

area contained under the impulse 
is written alongside it. 

and to the CDF 

Because of the integration convention discussed earlier in this section, 
we can note that p,<(xo) has (in principle) its discontinuity inlmediatcly 
to the left of xo = 0.2. 

We consider one simple example which deals with a continuous 
random variabte. Assume that the lifetiete of a particular component 
is known to be a random variable described by the PD1' 

Let's begin by determining the a priori probability that the component 
fails during its second month of use. In  an xoevent space we can col-
lect this event, 

/-
The event: component fails during its 

second month of use 



Thus, we require the quantity Prob(1 < x 5 2) = Il2fz(zo) dxo = &, 
which is equal to the shaded area in the following sketch: 

r T h t s  area IS equal to the probablltty 
that the component will fail during 
its second month of use 

-
0 1 2 3 4 

Since random variable x does not have a nonzero probability of taking 
on an experimental value of precisely 1.0 or 2.0, it makes no difference 
for this example whether we write Prob(1 < s < 2) or Prob(1 < x < 2) 
or Prob(1 < x 5 2) or ~ r o b ( 1  5 x 5 2). 

Next, we ask for the conditional probability that the component 
will fail during its second month of use, given that it did not fail during 
the first month. We'll do this two ways. One approach is to  define 
the events, 

r Event A: Component fails 

/-
Event B:Component fails 

i 
during first month during second month 

and then use the definition of conditional probability to determine the 
desired quantity, P(B IA'). Since it happens here that event B is 
included in event A', there follows 

P(A'B) - P(B)P(B  IA') = ---P(Af) P(Af) 

P(B) = +58 (previous result) P(A') = 114f&o) dxo = -I% 

As we would cxpect from the nature of the physical situation in this 
problem, our result has the property I'(BIAr) > P ( B ) .  

One other approach to this question would be to condition the 
event space for random variable x by noting that experimental values 
of x between 0.0 and 1.0 are now impossible. The relative probabilities 
of all events wholly contained within the conditioning event A' are to 
remain the same in our conditional space as they were in the original 
event space. To do this, the a priori PDF  for the remaining event 
points must be multiplied by a constant so that the resulting conditional 
PDF  for x will integrate to unity. This leads to t,he following condi- 
tional PDF  jzlAl(xo I A') : 

fx,,,(x,IA') 

1' ,-This area is equal to the conditional probability of 
2 1 / failure in the second month. niven that failure did. -

not occur during the first month. Area = $ 

Xo 

In  this latter solutior~, we simply worked directly with the 
notion which was formalized in Sec. 1-4 to obtain the definition of 
conditional probability. 

Before closing this section, let us observe that, once we are 
familiar with the unit-impulse function, a PMF may be considered to 
represent a special type of PDF. For instance, t.he following prob- 
ability mass furic:tion and probability density function give identictal 
dcscript ions of some random variable x : 

Only when there are particular advantages in doing so shall we repre- 
sent the probability assignment to a purely discrete random variable 
by a PDF instead of a PMF. 

2-11 Compound Probability Density Functions 

We may now consider' the case where several continuous random 
variables are defined on the sample space of an experiment. The 
assignment of probability measure is then specified by a compound 
probabilit,~ density function in an event space whose coordinates are 
the experimental values of the random variables. 

In  the two-dimensional event space for the possible experimental 
values of random variables x and y, the compound PDF fz,,(xo,yo) may 
be pictured as a surface plotted above the xo,yo plane. The volume 
enclosed between any axes in the xo,y0 plane and this f,,,(xo,yo) surface 
is equal to the probability of the experimental outcome falling within 
that area. For any event A defined in the xo,yo plane me have 



compound P D F  for random variables x and g is specified to be 

i f 0 5  y o ~ x o L 1  
otherwise 

and we wish to determine A,.fZ(xo), and the probability that the product 
of the experimental values of x and y obtained on a performance of the 
experinient is less than or equal to 0.25. Three relevant sketches in 
the xo, yo event space are 

Event: xo< x lxo+dxo 

1. 

"0 "0 

The value of A will be obtained from 

where our notation will be that the rightmost integration will always 
be performed first. Thus we have 

The probability that the experimental value of x will fall between 
xo and xo + dxo, which we know must be equal to fx(xo) dxoj is obtained 
by integrating the compound PDF over the strip in the event space 
which represents this event, 

For the continuous case, we obtain the marginal PDF's by integrating 
over other random variables, just as we performed the same operation 
by summing over the other random variables in the discrete case. 

Iy;=
-,fx.,(~o,~o) 
To determine the marginal PDF  fX(xo), we use 

fx(x0) = dye /%:=, =/,(YO) -,fzs(x0,zlo) dxo 

3xo dyo if 0 < xo ,< 1 

. otherwise 
And, in accordance with the properties of probability measure, 

yo- -= 0 

For convenience, we often use relations such as 

I t  should be remembered that such relations are not valid a t  points 
where a PDF contains impulses. W e  shall not add this qualification 
each time we employ such incremental statements. I n  any physical prob- 
lem, as long as weare aware of the presence of impulses in the PDF 
(nonzero probability mass a t  a point), this situation will cause us no 
particular difficulty. 

We close this section with a simple example. Suppose that the 

Note that we must be careful to substitute the correct expression for 
fZ.,(x~,ytJ everywhere in the x0,yo event space. The result simplifies to 

1f&o) = , i f O _ < x o ~ l
otherwise ' 

To determine the probability of the event xy 5 0.25, there are 
several ways to proceed. We may integrate f,,,(xo, yo) over the area 
representing this event in the xo,yo event space. We may integrate the 
joint P D F  over the complement of this event and subtract our result 
from unity, I n  each of these approaches we may integrate over xo 
first or over yo first. Note that each of these four possibilities is equiva- 
lent but that one of them involves far less work than the other three. 
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We now display this result and complete the problem by considering a 
more detailed sketch of the xo,yo event space. 

Only if we integrate the joint PDF here, 
over the complement of the event of 
interest,a d  if we integrate over yo 
first, may we perform the double 
integration by using only one set 
of limits for the entire integration 

1.0 xi, -
Prob (ry C 0.25) - 1-Idro/ dyo 3x0=0.5 

0.5 -L 
4x0 

This last discussion was a matter of elenleutary tr:dculus, not probabil- 
ity theory. However, it is important to realize how a little forc- 
thought in planning these multiple integrations call reduce the sn~ourit 
of calculation and improve the probability of gct-ting a c!orrevt result. 

2-12 Conditional Probability Density Functions 

Consider continuous random variables x and y, defined on the sample 
space of an experiment. If we nre given, for a p:wtic!ular performarice 
of the cxperimeut, that thc experimentnl vnIue of y is bctweetl yo and 
yo + dyo, we know that the evcrit ~>oint reprcserltirg the e?rperiment:~l 
outcome must lie within the shaded strip, 

We wish to evaluate the quantity frlY(xo I go) dxo, defined to be 
thc conditional probability that the experimental value of x is between 
zo and xo + dxo, given t,hat the experimental valueof y is between yo 
and yo + dye. Our procedure mill be to, define the incremental events 
of irlterest and substitute their probabilities into t>he definition of con- 
ditional probability introduced in Sec. 1-4. 

Event A :  xo < x _< xo + dxo Event B: 90 < g I yo + dyo 

CONDITIOJSAL PROBABILITY DENSITY FUNCTIONS 

Since the quantit,y frlY(io I yo) dxo has been defined to equal P (A  
we have 

The conditional PDF's are not defined when their denominators are 
equal to  zero. 

~ o t ethat the conditional PPD ff,l,(xoI yo), as rt function of xo 
for a given yo, is a curve of the shape obtained a t  the intersection of the 
surface (xO,yO)2nd a plane in three-dimensional space representing 
a constant value of coordinate yo. 

Using the event-space interpretation of conditional probability, 
we readily recognize how to condition a compound I'DF given any 

As all example of some of these concepts, let's continue with the 
example of the previous section, where the PDI; for continuous random 
variables x arid y is specified by 

i f O < y o < x o i l  
otherwise 

.Joint PDF for x and y is 
equal to 3 x o  inside this 
triangle and is equal to 
zero everywhere else 

3 x 0 

We'll calculate fyl,(yo Izo), taking advantage of the fact that we have 
already determined f,(xo). 

3x0 - if o _< yo 5 xo 5 I 
otherwise 
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may be found direct,ly in the xo,yo event space without ever determin- 
ing the PDF  ;fg(go). 

However, if  we have an interest only in the behavior of random 
variable g and we wish' to answer several questions about it, we may 
desire t,o work in a goevent space with the PDF f,(go). A PDF obtained 
for a function of some randoni variables whose PDF  is known is referred 
to as a derived PDF. 

We shall introduce one simple method for obtaining a derived 
Since the a priori PDI;'j~.y(xO,yo) is not a function of uo, it is reasonable distribution by working in the event space of the random variables 
that the conditional 1'DF .fyl,(y0 ) so) should be uniform over the possi- whose I'D17 is liuomn. There may be more efficient techniques for 
ble experimental values of randoni variable y. For this example, the particular classes of problems. Our method, however, will get us there 
reader might wish to establish that arid because we'll live in event space, we'll always Iinow exactly what 

we are doing. { To derive the I'DF for g, a function of some random variables, 
f i i l Y ( ~ 01 yo) = 1 - yo2 i f ~ < y ~ g x ~ i i  

otherwise we need t,o perform only two simple steps in the event space of the 
original random variables: __= 

__I -2-13 independence and Expectation for Continuous Random Variables = _.__ 
Two corit.inuous random variables x arid g are defined to be indepen- FIRST STEP: Determine the probability of t.he event g _< go for all -
dent (or statistically independent) if and only if values of go. __I 

__i; 

fZly("o( go) = .fX(xo) for all possible xo,yo SECOND STEP: Differentiate this quantity wit.h respect to go to obtain SESS 
fo(g0). -__. 

= .f.(~~lf,~,(y~a d  ~ ~ ~ C ~ S ~ , & O , V O )  XO)= /,,(~o)f&~ yo) is always true ==== --by the definition of the conditional PDlT's, an equivalent condition 
for the independence of x and y is The first step requires that we calculate the cu~nulative probability 

= Jlc(x~)fy(yP) for all xo,yo distribut.ion function po5(go). To do so; we sin~ply integrate t,he given S r , y ( x ~ , ~ ~ )  
I'D&' for the original random variables over the appropriate region of 

We say that any number of random variables are nwtually indepen- their event space. 
dent if their compound ]'Dl' factors into the product of their marginal Consider the following exnmplc: h fair wheel of fortune, con- 
13DF's for all possible experimental values of the randon1 variables. tir~uously calibrated from 0.00 to 1.00, is to be s p u ~  twice. The experi- 

The conditional expectation of g(x,y), a single-valued function mental values of random variables s arid 1/ are defined to bc the readings 
of continuous random variables x and y, given that event A has occurred, on the first and second spins, respectively. [By "fair" we nleaxi, of 
is defined to be course, that the wheel has no nmnory (different spins are independent 

events) and that any intervals of equal arc are equally likely to iriclude 
t.he experimentd outcon~e.] We wish to determine t.he 1'DF So(go) for 

xAll the definitions and results obtained in Sec. 2-7 carry over directly thc clasc where random vari:~blc g is defincd by g(x,y) = -. 
to the continuous case, wit-h summations replaced by integrations. Y 

Thc exan~ple states that the spins :we independent. Therefore 

2-14 Derived Probability Density Functions we may obtain the joint I'DF 

1.0 i f O < x o _ < l , O < y o L 1We have learned that g(x,y), a function of random variables x and y, "f=.&o,~lo)= fZ(~o>.fy(~o>0.0 otherwise= 
is itself a new random variable. From the definition ,of expectation, 
we also know that the expected value of g(x, y), or any function of g(x, y), Next, in the xo,yo event space, we collect the event g 5 go, 
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For the case O l g ,  < 1: For the case 1<go 5 00: 

Two sketches are given to show that the boundaries of the event of 
interest are different for the cases go < 1 and go > I. For our par- 
ticular example, because of the very special fact that fr,u(xoryo)is 
everywhere equal to either zero or unity, we can replace the integration 

by a simple calculation of areas to obtain, for the first step of our 
two-step procedure, 

At this point, of course, we may check that this CDF is a 
monot~or~icallyirlcreasit~g function of .roand that it increases from zero 
at  go = - 00 to urlit,y a t  go = + a. Sow, for step 2, we differentiate 
p,&o) to find 

DERIVED PROBABILITY DENSITY FUNCTIONS 

If we wish to derive a joint PDF, say, for g(x,y) and h(x,y), then 
in'step 1 we collect the probability 

for all values of go and ho~ ~ ~ , ~ ~ ~ ( g o , h ~ )  


which represents the joint CDF for random variables g and h. For 
step 2 we would perfornl the differentiation 

As the number of derived random variables increases, dur method 
becomes unreasonably cumbersome; but more efficient techniques exist 
for particular t.ypes of problems. 

One further detail is relevant to the mechanics of the work 
involved in carrying out our two-step method for derived distributions. 
Our method involves an integration (step 1) followed by a differentia-
tion (step 2). Although the integrations and differentiations are gen- 
er:tlly with respect to different variables, we may wish to differentiate 
first before formally performing t,he integration. For this purpose, i t  is 
useful to rcmember one very useful formula and the picture from which 
it is obtained. 

In n-orking with a relation of the form 

we have an integral over z whose lower h i t ,  upper limit., and integrand 
@(4

are all functions of a. If we desire to oht.ain the derivative 7 

it is more efficient to use the following forrnula directly than t,o first 
perform the integration with respect to r and then to differentiate wkh 
respcct to a. 

This relation is easy to remember if \vc keep in mind the picture from 
which it may be obtained 

The dotted lines represent 
changes in r (0,x) and 
the limits of the integral 
due to small changes in a 



The reader will have many opportunities to benefit from the 
cE R (a)

above expression for -da in obtaining derived distributions. For 

instance, in Prob. 2.30 at  the end of this chapter, this expression is used 
in order to obtain the desired PDF  in a useful form. 

2-15 Examples Involving Continuous Random Variables 

However simple the concepts may seem, no reader should assume that 
he has a working knowledge of the material in this chapter until he has 
successfulIy mastered many problems like those at  the end of the chap- 
ter. Two examples with solutions follow, but we must realize that 
these examples are necessarily a narrow representation of a very large 
class of problems. Our first example gives a straightforward drill on 
notation and procedures. The second example is more physically 
motivated. 

example 1 Random variables x, y, and x are described by the compound prob- 
ability density function, 

a From the statement of the compound PDF, note that the experimental 
value of random variable x can never be greater than unity. Since we 
are asked to det,ermine the probability that this experimental value is 
less than or equal to 3.0, we can immediately answer 

b When determining expressions for PDF's and CDF's we must always 
remember that the proper expressions must be listed for all values of 
the arguments. 

dzo(xoxo+ 3yozo) if 0 i xo 5 1, 0 5 Y O  5 1 
otherwise 

which simplifies to 

+(xo+ 3yo) if 0 _< xo L 1, 0 5 YO L 1 
otherwise 
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c Because of the given ranges of possible experimental values of x and 
y, we note that 

which simplifies to 

which has all the essential properties of a CDF. 

d Since we have already found fz,y(~O,yO), we can determine the marginal 
PDF  fx(xo) by integrating over yo. For 0 _< xo _< 1, we have 

and we know that f,(xo) is zero elsewhere. 

+ x o + %  i f O _ < x o 5 1  
otherwise 

Whenever possible, we perform simple checks on our answers to see 
whether or not they make any sense. For instance, here we'd check to  

see that LL- DD 
fx(xo) dxo is unity. Happily, i t  is. 

This result is a t  least compatible with reason, since xy is always between 
zero and unity. 

- x u  X0,Yo for all possible zo- /yfGOYO j.((xO) ) dy0 

For any possible value of XO, our E(y I x) does result in a conditional 
expectation for y which is always between the smallest and largest 
possible experimental values of random variable y. 
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example 2 Each day as he leaves home for the local casino, Oscar spins a 
biased wheel of fortune to determine how much money to take with him. 
He takes exactly x hundred dollars 1vit.h him, where x is a continuous 
random variable described by t.he probability density function 

f r ( x o  ) 

'T' 

As a matter of convenience, we are assunling that the currency is 
infinitely divisible. (Rounding off to the nearest penny wouldn't matc- 
ter much.) 

Oscar has a lot of experience at  this. All of it is bad. Decades 
of experience have shown that,, over the course of an evening, Oscar 
never wins. In  fact, the anlount with which he returns home on any 
particular night is uniformly distributed between zero and the anlount 
with which he started out. 

Let random variable y represent the amount (in hundreds of 
dollars) Oscar brings home on any particular night. 
(a) Determine J,,,(xo,yo), the joint P D I ~for his original wealth z and 

his terminal wealth y on any evening. 
(b) Determinej,(yo), the marginal probability density function for the 

amount Oscar will bring home on a randomly selected night. 
(c) Determine the expected value of Oscar's loss on any particular 

night. 
(d) On one particular night, we learn that Oscar returned home with 

less than $200. For that night, determine the coriditior~al proba- 
bility of each of the following events: 

(i) He started out for the casino with less than $200. 
(ii) His loss was' less than $100. 

(iii) His loss that night was exactly $75. 
' a From the example statement we obtain 

The definit.ion of conditional probability is used with the given fZ(zo) 
to determine 

and this result may be displayed in an xo,yo event space, 

terminal capital in ( m'eds m a r s  ) 

Joint PDF is equal to 118 inside this triangle 
and zero elsewhere. A quick check shows 
that the calculated PDF does integrate to 
unity over the entire event space. 

initial capital in 
4 0 ( hundreds of dollars ) 

4 


Event: yo<y "yo + dyo 

yo 

0 0 

For 0 _< yo ,< 4, 

And we can sketch this PDF  as 

f,.(y0 
The f, (yo ) PDF does integrate to 
unity and, as was obvious from the . 

above sketch (since the joint PDF 
was constant inside the triangle), 
it is linearly decreasing from a 
maximum at yo=O to zero at y0=4 

yo 

c E(x - Y) = YO~~Z.~(XO,Y~)LoLo(x" - dxo YO 

We must always be careful of the limits on the integrals when' we 



substitute ,actual expressions for the compound PDF. We'll integrate 
over xo first. 

where again we are using the convention that the successive integrals 
are to be performed in order from right to left. By changing a sign in 
the proof in Sec. 2-7, we may prove the relation 

E(x - y) = E(x) - E(y) 

Since we already have the marginal PDF's, this relation allows us to  
obtain E(x - y) by another route, 

d Given that Oscar returned home with less than $200, we work in the 
appropriate conditional sample space. At all points consistent with 
the conditioning event, the conditional P D F  is equal to the original 
joint PDF scaled up by the reciprocal of the a priori probability of the 
conditioning event. 

The event: "he returned home with less than 
$200."The a priori probability of this event is 
equal to the integral of the a priori joint 
PDF over this event which is equal to 

in area of interest conditioning event 

Thus, the conditional joint PDF  is equal to a/$ = + in the region where 
it  is nonzero. Now we may answer all questions in this conditional 
space. 

The event: "he started out with less than $200" 

Conditional joint PDF \-~rea representing 
in area of interest event of interest 

2e .$ .;. 3y .%., 

e event nhis loss was less than $1" 

<&yi/, 
.$i TI 1 

x0 P ( B ) = $  ( 1 * 2 ) = ~  o r T 
Conditional joint PDF-I L ~ r e a  representing 
in area of interest event of interest 

We realize that, in general, we, would have to integrate the 
conditional 13DF over the appropriate events to obtain their proba- 
bilities. Only because the conditional PDF is a constant have we been 
able to reduce the integrations to simple multiplications. 
iii As long as we allow the currency to be infinitely divisible, the con- 

ditional probability measure associated with the event x - y = 75 
is equal to zero. The integral of the compound P D F f z , v ( ~ O , ~ O )  over 
the line representing this event in the xo,yo event space is equal t o  
zero. 

P R O B L E M S  

2.01 The geometric P M F  for discrete ran.dom variable K is defined to be 

px(K0) = ( y1 - P)Ko-l if KO = 1,2 ,  3 , .  . . a n d 0  < P < 1 
for all other values of KO 

a Determine the value of C. 
b Let N be a positive integer. Determine the probability that an 

experimental value of K will be greater than N. 
c Given that an experimental value of random variable K is greater 

than integer N, what is the conditional probability that i t  is also 
larger than 2N? (We shall discuss this special result in Chap. 4.) 



- - - - - - - - d What is the probability that a11 cxperimcntal value of K is equal to - - - - - - - - an integer nlultiplc of 3? - - - - - - - - = - 2.02 The probability that any particular bulb ~vill burn out during its - - - - - - 
= - K t h  month of use is given by the 1'MF for K, - - - 

Four bulbs are life-tested simult.aneously. Determine the probability 
t.hat 
a Xone of the four bulbs fails during its first nlonth of use. 
b Exactly two bulbs have failed by the cnd of the third month. 
c Exactly one bulb fails during each of the first three months. 
d Exactly one bulb has failed by the end of the sccond month, and 

exactly two bulbs are still working at the start of the fifth month. 
- - - 
EE - 2.03 . The Poisson PSlk' for randoni variz~ble K is defined to be - - - - 

- - - - - - a S h o ~ v t h a t t h i s I ' ~ 1 I : s u m s t o u n i t y .  - - - - - 
- = b Discwte random variables R and S are defined on the sample spaces - - - - - - - - - - - of two different, unrelated experiments, and thesc random variables 
- - - - - - 
- , - have the 1'11 F's 
- - 

- - - - - - - - - - - - Use an Ro,So sample space to determine the I'MF pT(TO), where 
- - - - - - - - discrete random variable T is defined by T = R + S. 
- - - - - - c Random variable W is defined by W = cR, where c is a known - - - - - - - - - - nonzero constant. Determine the PMF pw(W0) and the expected 
- - - - - value of 'CV. How will the nth central moment of W change if c - - - - - - - - - - - is doubled? 
- - - - - - - - s - 2.04 Discrete random variable x is described by the PMF - 
i l - - 

- - - - - - - - Let dl, dZ, . . . , d~ represent N successive independent experimental - - - - - - - - values of random variable x. - - - - - - = a Determine the numerical value of K. - - 

b Determine the probability that d l  > d2. 
c Determine the probability that dl + d2 + . . + d~ ,< 1.0 
d Define r = max(dl,d2) and s F min(d1,dz). Determine the following 

PRIF's for, all values of their .arguments: 
i p&o) ,. ii p+(1'0 1 0) 

i i  p ( o , o  iv pt(to), with t = (1 + d J / ( l  + s) 
e Determ-ine the expected value and variance of random variable s 

defined above. 
f Given dl + d2 _< 2.0, determine the conditional expected value and 

conditional variance of random variable s defined above. 

2.05 Discrete random variable x is described by the PMF p,(xo). Before 
an experiment is performed, we are required to guess a value d. After 
an experimental value of x is obtained, we shall then be paid an amount 
A - B(x - d)2 dollars. 
a What value of d should we, use to maximize the expected value of our 

financial gain? 
b Determine the value of A such that the expected value of the gain 

is zero dollars. 

2.06 Consider an experiment in which a fair four-sided die (with faces 
labeled 0, 1, 2, 3) is thrown once to determine how many times a fair 
coin is to be flipped. In  the sample space of this experiment, random 
variables n and k are defined by 
n = down-face value on the throw of the tetrahedral die 
Ic = total number of heads resulting from the coin flips 

Determine and sketch each of the following functions for all 
values of their arguments: 
a pn(no) b pkln(ko 1 2) c pnlk(no 1 2) d px-(ko) 
e Also determine the conditional I'SIF for random variable n, given 

that the experimental value of k is an,odd number. 

Joe and Helen each know that the a priori probability that her 
mother will be home on any given night is 0.6. However, Helen can 
determine her mothek's plans for the night a t  6 P.M., and then, a t  
6 : 15 P.M., she has only one chance each evening to shout one of two 
code words across the river to Joe. He will visit her with probability 
1.0 if he thinlis Helen's message means "Ma will be away," and he will 
stay home with probability 1.0 if he thinlis the message means "Ma 
will be home." 

But Helen has a meek voice, and the river is channeled for 
heavy barge traffic. Thus she is faced with the problem of coding for 
a noisy channel. She has decided to use a code containing only the 
code words A and B. 



RANDOM VARIABLES 

The channel is described by 
telephow line (to be used once a day a t  6 :15P.M.) with the following 
properties: 

P(a1 A) = 3 P ( a I B ) = +  P ( b ( A ) = +  P ( b J B ) = $  

and these events are defined in the following sketch: 
2.08 A frazzle is equally 1il;cly to contain zero, one, two, or three defects. 

-2 K.0 frazzle has more than three defects. The cash price of each frazzle 
a is event "Joe thinks is set a t  $(lo - K2) ,where K is the number of defects in it. Gummed 
message is An labels, each representing $1, are placed on each frazzle to indicate its 

cash value (one label for a $1 frazzle, two labels for a $2 frazzle, etc.). 
What is the probability that a randomly selected label (chosen 

from the pile of labels a t  the printing plant) will end up on a frazzle 
b is event "Joe thinks which has exactly two defects? 
message is B" 

1 Noisy channel I 2.09 A pair of fair four-sided dice is thrown once. Each die has faces 
Input words Output words labeled 1, 2, 3, and 4. Discrete rand on^ variable x is defined to  be 

the product of t.he down-face values. Determine the conditional vari- 
a I n  order to minimize the probability of error between transmitted ance of x2 give11 that the sum of the down-face values is greater than 

and received messages, should Helen and Joe agree to use code I or the product of the down-face values. 
code II? 

2.10 Discrete random variables x and y are defined on the sample space 
Code I Code I1 of an experiment, and g(x,y) is a single valued function of its argument. 

A = Ma away A = Ma home Use an evmt-space argument to establish that 
B = Ma home B = Ma away 

b Helen and Joe put the following cash values (in dollars) on all possible 
outcon~esof a day: 

Ma home and Joe comes -30 
Ma home and Joe doesn't come 0 
Ma away and Joe comes f 3 0  
Ma away and Joe doesn't come -5 = - 2.11 At a pa~ticular point on a busy one-way single-lane road, a study 

s
=Joe and Helen make all their plans with the objective of maximizing - is made of. the distribution of the interarrival period T between suc- -
Cthe expected value of each day of their continuing romance. Which - cessive car'arrivals. A reasonable quantization of the data for a chain =-

of the above codes will maximize the expected cash value per day of of 10,001 &ars results in the following tabulation: 
this romance? , 

c Clara isn't quite so attractive as Helen, but a t  least she lives on the T, seconds 2 4 6 8 12 
-same side of the river. What would be the lower limit of Clara's 

expected value per day which would make Joe decide to give up Number of occurrences 1,000 2,000 4,000 2,000 1,000 

Helen? 
d What would be the maximum rate which Joe would pay the phone 

(Consider the cars t.o be as wide as the road, but very short.) 

company for a noiseless wire to Helen's house which he could use 
a A young wombat, who never turns back, requires five seconds to 

cross the street. Determine the probability that he survives i f :  
once per day at  6: 15 P.M.? 

i He starts immediately after a car has passed. e How much is i t  worth to Joe and Helen to double her mother's 
ii He starts a t  a random time, selected without any dependence 

probability of being away from home? Would this be a better or 
& the state of the traffic. 

worse investment than spending the same amount of money for a 












