
CHAPTER SEVEN 

an 
introduction 

to 
statistics 

The statistician suggests probabilistic models of reality and investigates 
'their validity. He does so in an attempt to gain insight into the 

behavior of physical systems and to facilitate better predictions and 
decisions regarding these systems. A primary concern of statistics is 
statistical inference, the drawing of inferences from data. 

The discussions in this chapter are brief, based on simple exam- 
ples, somewhat incomplete, and always a t  an introductory level. Our 
major objectives are (1) to introduce some of the fundamental issues 
and methods of statistics and (2) to indicate the nature of the transition 
required as one moves from probability theory. to its applications for 
statistical reasoning. 



AN INTRODUCTION TO STATISTICS 

We begin with a few comments on the relation between statistics 
and probability theory. After identifying some prime issues of concern 
in statistical investigations, we consider common methods for the study 
of these issues. These methods generally represent the viewpoint of 
classical statistics. Our concluding sections serve as a brief introduc- 
tion to the developing field of Bayesian (or modern) statistics. 

Statistics Is Different 

Probability theory is axiomatic. Fully defined probability problen~s 
have unique and precise solutions. So far we have dealt with problems 
which are wholly abstract, although they have often been based on 
probabilistic nzodels of reality. 

The field of statistics is different. Statistics is concerned with 
the relation of such models to actual physical systen~s. The methods 
employed by the statist.ician are arbitrary ways of being reasonable in 
the application of probability theory to physical situations. His 
primary tools are probability theory, a mathematical sophistication, 
and conlmotl sense. 

To use an extreme example, there simply is no unique best or 
correct way to ext,rapolate the gross national product five years hence 
from three days of rainfall data. In  fact, there is no best way to predict 
the rainfall for the fourth day. But there are many ways to try. 

Statistical Models and Some Related Issues 

In  contrast to our work in previous chapters, wc are now concerned 
both with models of reality and reality itself. I t  is important that 
we kecp in mind the differences betwcen the stntistician's model (and 
its implirations) and the actual physical sitmiion that is being modeled. 

In the real world, we may design and perform cxperin~ents. We 
may observe certain cha~+acleristicsoJ interest of the experimental out,- 
clomes. If we arc studying the behavior of a. coin of suspirious origin, 
a charac*t.cristic of interest might bc the number of heads observed in :I 
certain number of tosses. If we arc testing a vnccinc, onc charac- 
teristic of interest could be the observed immunity rates ill ctontrol 
group and in ,z vaccinated group. 

What is t,hc nature of the st8atistic:ian's model? From whatever 
- Imowledgc hc has of tho physical me(*hanisms involved and from his 

past experienrc, t,he stut,istivian postulates n probabilist i n  model for thc 
system of interest,. He anticipates that this model will exhibit :I 

probabilistic behavior i n  the characteristics interest similar to t.h:tt of 
the physical system. The details of thc model might or might not hc 
c*losely related to the actunl nature of the physicd system. 

If the statist,ic:ian is concerned with the coin of suspicious origin. 

he might suggest a model which is a Bernoulli process with probability 
P for a head on any toss. For the study of the vaccine, he might 
suggest a model which assigns a probability of immunity PI to each 
member of the control group and assigns a probability of immunity Pz 
to each member of the vaccinated group. 

We shall consider some of the questions which the statistician 
adis about his models and learn how he employs experimental data to 
explore these questions. 

1 Based on some experimental data, does a certain model seem reasonable 
or a t  least not particularly unreasonable? This is the domain of 
signijicance testing. In  a significance test, the statistician speculates 
on the likelihood that data similar to that actually observed would be 
generated by hypothetical experiments with the model. 

2 Based on some experimental data, how do we express a preference 
among several postulated models? (These models might be similar 
models differing only in the values of their parameters.) When one 
deals 1vit.h a select,ion among several hypothesized models, he is involved 
in a matter of hypothesis testing. We shall learn that hypothesis testing 
and sigtiificance testing are very closely related. 

3 Given the form of a postulated model of the physical system and some 
experimental data, how may the data be employed to establish the 
most desirable values of the parameters of the model? This question 
would arise, for example', if we considered the Bernoulli model for flips 
of the suspicious coin and wished to adjust parameter P t o  make the 
model as compatible as possible with the experimental data. This is 
the domain of estimation. 

4 We may be uncertain of the appropriate parameters for our model. 
However, from previous experience with the physical system and from 
other information, we may have convictions about a reasonable PDF 
for these parameters (which are, to us, random variables). The field 
of Bayesian analysis develops an efficient framework for combining 
such "prior litlowledge" with experimen'tal data. Bayesian analysis 
is particularly suitable for i~lvestigations which must result in decisions 
among several possible future courses of action. 

The remainder of this book is concerned with the four issues 
introduced above. The results we shall obtain are based on subjective 
applications of coriccpts of probability theory. 

7-3 Statistics: Sample Values and Experimental Values 

In previous chapters, the phrase "experimental value" always applied 
to what we might now consider to be the outcome oj  a hypothetical expel+ 
ment with a model of a physical system. Since it is important that  .we 
be able to dist.inguish between consequences of a model and conse- 
quences of reality, we establish two definitions. 
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EXPERIMENTAL VALUE: Refers to actual data which must, of course, EZZ -
be obtained by the performance of (real) 

---experiments with a physical system =--
SAMPLE VALUE : Refers to the outcome resulting from the 

performance of (hypothetical) experiments EES -with a model of a physical system -
These particular definitions are not universal in the literature, but they 
will provide us with an explicit language. 

Suppose that we perform a hypothetical experiment with our 
model n times. Let random variable x be the characteristic of interest 
defined on the possible experimental outcomes. We use the notation 
xi to denote the random variable defined on the ith performance of 
this hypothetical experiment. The set of random variables (xl,x2, 
. . . ,x.) is defined to be a sample of sire n of random variable x. A 
sample of size n is a collection of random variables whose probabilistic 
behavior is specified by our model. Hypothesizing a model is equiva-
lent to specifying a compound PDF for the members of the sample. 

We shall use the word statistic to describe any function of some 
random variables, q(u,v,w, . . .). We may use for the argument of a 
statistic either the members of a sample or actual experimental values 
of the random variables. The former case results in what is known as 
a sample value of the statistic. When experimental values are used 
for u,v,w, . . . , we obtain an experimental value of the statistic. 
Given a specific model for consideration, we may, in principle, derive 
the PDF for the sample value of any statistic from the compound 
PDF for the members of the sample. If our model happens to be 
correct, this PDF would also describe the experimental value of the 
statistic. 

Much of the field of statistics hinges on the following threesteps: 

1 Postulate a model for the physical system of interest. ---
= 

2 Based on this model, select a desirable statistic for which: --= 

The PDF for the sample value of the statistic may be calculated in -a useful form. ---
Experimental values of the statistic may be obtained from reality. SESZ -

3 Obtain an experimental value of the statistic, and comment on the 
likelihood that a similar value would result from the use of the ZS?iZ 

= 
proposed model instead of reality. 

The operation of deriving the PDF's and their means and vari-
ances for useful statistics is often very complicated, but there are a few 
c,ases of frequent interest for which some of these calculations are not 
too involved. Assuming that the xi's in our sample are always independ-
ent and identically distributed, we present some examples. 

One fundamental statistic of 'the sample (x1,x2, . . . ,x,) is the 
sample mean M,, whose definition, expected value, and variance were 
introduced in Sec. 6-3 

and our proof, for the case gZ2< m ,  showed that M .  obeyed (at least) 
the weak law of large numbers. If characteristic x is in fact described 
by any PDF with a finite variance, we can with high probability use 
M .  as a good estimate of E(x) by using a large value of n, since we know 
that M ,  converges stochastically to E(x). 

I t  is often difficult to determine the exact expression forf~,(M),  
the P D F  for the sample mean. Quite often we turn to the central 
limit theorem for an approximation to this PDF. Our interests in the 
PDF's for particular statistics will become clear in later sections. 

Another important statistic is SR2,the sample variance. The 
definition of this particular random variable is given by 

where M. is the sample mean as defined earlier. We may expand the 
above expression, 

This is a more usefuf form of Sn2for the calculation of its expectation 

The expectation in the first term is the expected value of a sum and 
may be simplified by 



The calculation of E(21fn2) requires a few intermediate steps, 

In  the last term of the above expression, me have used the fact that, for 
1 # j, xt and Xj are independent random variables. Returning to our 
expression for E(Sn2), the expected value of the sample variance, we 
have 

Thus, we see that for samples of a large size, the expected value of the 
sample variance is very close to the variance of random variable x. 
The poor agreement between E(Sn2) and us2 for small n is most reasona- 
ble when one considers the definition of the sample variance for a 
sample of size 1. 

We shall not investigate the variance of the sample variance. 
However, the reader should realize that a result obtainable from the 
previous equation, namely, 

lim E(Sn2) = oz2 
n-+ 00 

does not necessarily mean, in itself, that an experimental value of Sn2 
for large n is with high probability a good estimate of us2. We would 
need to establish that S n 2  a t  'least obeys a weak law of large numbers 
before we could have confidence in an experimental value of Sn2(for 
large n) as a good estimator of uz2. For instance, E(Sn2) - oZ2 for large 
n does not even require that the variance of Sn2be finite. 

7-4 Significance Testing 

Assume that, as a result of preliminary modeling efforts, me hnve 
proposed a model for a physical system and we are able to d(:trr- 
mine the I'DF for the sample value of q, the statist,ic we have selected. 
In significance testing, we work in the event spare for statistic g, using 
this I'DF, which mould also hold for expcrimcntal vslucs of q i[ our 

model were correct. We wish to evaluate the hypothesis that our 
model is correct. 

In  the event space for q we define an event W, known as the 
improbable event,. We may select for our improbable event any particu- 
lar event of probability a, where CY is known as the level of significance of 
the test. Ajter event TV has been selected, we obtain an experimental 
value of statistic q. Depending on whether or not the experimental 
value of q falls within the improbable event W, we reach one of two 
conclusions as a result of the significance test. These conclusions are 

1 Rejection oi the hypothesis. The experimental value q fell within the 
improbable event W. If our hypothesized model were correct, our 
observed experimental value of the statistic would be an improbable 
result. Since we did in fact obtain such an experimental value, we 
believe it to be unlikely that our hypothesis is correct. 

2 Acceptance qf the hypothesis. The experimental value of q fell in W'. 
If our hypothesis were true, the observed experimental value of the 
statistic would not be an inzprobable event. Since we did in fact 
obtain such an experimental value, the significance test has not provided 
us with any particular reason to doubt the hypothesis. 

We discuss some examples and further details, deferring general 
comments until we are more familiar with significance testing. 

Suppose that we are studying a coin-flipping process to test the 
hypothesis that the process is a Bernoulli process composed of fair 
(P = +) trials. Eventua.lly, we shall observe 10,000 ffips,' and me have 
selected as our statistic k the number of heads in 10,000 flips. Using 
the central limit theorem, we may, for our purposes, approximate the 
sample value of k as a continuous random variable with a Gaussian 
PDF as shown below: 

Thus we have the conditional PDF  for statistic k, given our hypothesis 
is correct. If we set a, the probability of the "improbable" event a t  
0.05, many events could serve as the improbable event !W. Several 
such choices for W are shown below in an event space for k, with.  
P(W) indicated by the area under the PDF f k ( lco) .  





In a significance test me work with the conditional PDF for our stn- 
t,istic, given that our hypothesis is true. For this example, we have 

Assume that we have decided to test a t  the 0.05 level of signifi- 
cance and that, with no particular properties of the possible alternative 
hypotheses in mind, we choose to malie the acceptance region for the 
significance test as small as possible. This leads to a rejection region 
of the form l l~ f  > A .  The following sketch applies, 

and A is determined by 

@ ( )  = 0.875 A = 6.2 from table in See. 6-4 

Thus, at  the 0.05 level, we shall reject our hypothesis that E(x)  = 0 if 
it happens that the magnitude of the sum of the 10 experimental values 
of a is greate'r than 6.2. 

We conclude this section with several brief comments on signifi- 
cance testing: 

1 The use of different statistics, based on samples of the same size and 
the same experimental values, may result in different conclusions from. 
the significance test, even if the acceptance regions-for both statistics 

' 

are made as small as possible (see Prob. 7.06). 
2 In  our examples, it happened that the only parameter in the PDF's 

for the statist,ics was the one whose value was specified by the hypoth- 
esis. In  the above example, if uZ2 were not specified and we wished to 
make no assumptions about it, we would have had to try to find a 
statistic whose PDF depended on E(x) but not on uZ2. 

3 Even if the outcome of a significance test results in acceptance of the 
hypothesis, there are probably many other more accurate (and less 
accurate) hypotheses which would also be accepted ,as the result of 
similar significance tests upon them. 

4 Because of the imprecise statement of the alternative hypotheses for 
a significance test, there is little we can say in general about the rela- 
tive desirability of several possible statistics based on samples of the 
same size. One desires a statistic which, in its event space, discrimi- 
nates as sharply as possible between his hypothesis and other hypoth- 
eses. In  almost all situations; increasing the size of the sample will 
contribute to this discrimination. 

5 The formulation of a significance test does not allow us to determine 
the a priori probability that n significance test will result in an incorrect 
conclusion. Even if we can agree to accept an a priori probability 
P(Ho) that the hypothesis No is true (before we undertake the test), 
we are still unable to evaluate the probability of an incorrect outcon~e 
of the significance test. Consider the following sequential event space 
picture for any significance test: 

"Correct acceptancew 

Reject H, T a k e  rejectioni 

"False acceptancen 

Reject Ho 'Correct rejectionn 

The lack of specific alternatives to No prevents us from calculating a 
priori probabilities for the bottom two event points, even if we accept 
a value (or range of values) for P(H0). We have no way to estimate B, 
the conditional probability of acceptance of H o  given Ho is incorrect. 

6 One value of significance testing is that it often leads one to discard 
particularly poor hypotheses. In most cases, statistics based on large 
enough sanlples are excellent for this purpose, and this is achieved 
with n rather small rlunlber of assumptions about the situation under 
study. 

7-5 Parametric and Nonparametric Hypotheses 

I Two cxamples of significance tests were considered in the previous 
section. In  both cases, the PDF for the statistic resulting from the 
model contained a parameter. In  t h e  first example, the parameter 



was P, the probability of success for a Bernoulli process. In  the second 
example, the parameter of the PDF for the statistic was r, the expected 
value of a Gaussian random variable. The significance tests were per- 
formed on hypotheses which specified values for these parameters. 

If, in effect, we assume the given form of a model and test hypoth- 
eses which specify values for parameters of the model, we say that we 
are testing paranzeh-ic hypotheses. The hypotheses in both examples 
were parametric hypotheses. 

Nonparametric hypotheses are of n. broader nature, often with. 
regard to the general form of a model or the form of the resulting PDF 
for the characteristic of interest. The following are some typical non- 
parametric hypotheses: 

1 Characteristic x is normally distributed. 
2 Random variables x and y have identical marginal I'DF's, that is, 
f,(u)= f,(u) for all values of u. 

3 Random variables x and y have unequal expected values. 
4 The variance of random variable x is greater than the variance of 

random variable y. 

In principle, significance testing for parametric and nonparamet- 
ric hypotheses follows exactly the same proced,ure. In practice, the 
determintltion of useful statistics for nonparametric tests is often a very 
difficult task. To be useful, the PDF's for such statistics must not 
depend on unlinown quantities. Furthermore, one strives to make as 
few additional assun~ptions as possible before testing nonparametric 
hypotheses. Several nonparametric methods of great practical value, 
however, may be found in most elementary statistics texts. 

7-6 Hypothesis Testing 

The term signZficance test normally refers to the evaluation of a 
hypothesis Ha in the absence of any useful information about alter- 
native hypotheses. An evaluation of H o  in a situation where the alter- 
native hypotheses H1, Hz, . . . are specified is known as a hypothesis 
test. 

In  this section we discuss the situation where it  is known that 
there are only two possible parametric hypotheses Ho(Q = Qo) and 
HI(& = Ql).  We are using Q to denote the parameter of interest. 

To perform a hypothesis test, me select one of the hypotheses, 
H O  (called the null hypothesis), and subject i t  to a significance test 
based on some statistic q, If the experimental value of statistic q falls 
into the critical (or rejection) region W, defined (as in Sec. 7-4) by 

me shall ('reject" Noand "accept" H I .  Otherwise we shall accept Ho 
and reject H I .  In  order t,o discuss the choice of the "best" possible 
critical region W for a given statistic in the presence of a specific alter- 
native hypothesis HI, consider the two possible errors which may result 
from the outconle of a hypothesis test. 

Suppose that Ho were true. If this were so, the only possible 
error would be to reject Ho in favor of H I .  The conditional probability 
of this type of error (called an error of type I ,  or false rejection) given 
Hois true is 

Suppose that Ho is false and H I  is true. Then the only type of 
error we could make would be to accept H o  and reject H I .  The con- 
ditional probability of this type of error (called an error of type 11, or 
false acceptance) given H1 is true is 

Prob(accept H OI Q = Q J  = Prob(q not in W I Q = Q I )  = ,8 

I t  is important to realize that a and /? are conditional proba- 
bili ties which apply in different conditional event spaces. Further-
more, for signijcance testing (in Sec. 7-4) we did not know enough 
about the alternative hypotheses to be able to evaluate 0. When we 
are concerned with a hypothesis test, this is no longer the case. 

Let's return to the example of 10,000 coin tosses and a Bernoulli 
model of the process. Assume that we consider only the two alternative 
hypotheses H o ( P  = 0.5) and H1(P = 0.6). These hypotheses lead to 
two alternative conditional 1'DZ"s fork, the number of heads. We have 

Conditional PDF 
for k if Ho is true 

Conditional PDF 
for k if H,is true 

In this case, for any given a (the conditional probability of false rejec- 
tion) we desire to select a critical region which will minimize P (the 
conditional probability of false acceptance). I t  should be clear that, 
for this example, the most desirable critical region W for a given a 
will be a continuous range of k on the right. For a given value of a, 
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we may now identify a and /3 as areas under the conditional PDF's for 
k ,  as shown below: 

A 
Area - a = conditional probability 

/of false rejection of Hop given 

J' ' Critical region W for Area =. 8 - conditional probability rejection of Ho 
of false acceptance of H,, given 
Ho is false 

In  practice, the selection of a pair of values a and /3 would usually 
depend on the relative costs of the two possible types of errors and 
some a priori estimate of the probability that Ho is true (see l'rob. 7.10). 

Consider a sequential event space for the performance of a 
hypothesis test upon No with one specific alternative hypothesis H I :  

Accept Ho 0 True acceptance of Hon 

% H ,  is true and 7 Accept *O 

e "False acceptance of Ho" 

Ho  is false 
Reject Ho True rejection of HQ" 

If wc are willing to assign a11 a priori probability P(H0) to the 
validity of H ,  we may then state that the probability (to us) that this 
hypothesis test will result in an incorrect conelusion is equal to 

aP(Ii0) + Pi1 - P(ff0)l 

Even if we are uncon~fortable with any step which involves the nssunlp- 
tion of P(No), we may still use the fact that 

, , 

and the previous expression to obtrairl the hounds 

min (a,@) ( Prob(incorrect conclusion) 5 max (a$) 

We now comment on the selection of the statistic g. For any 

hypothesis test, a desirable statistic would be one which provides good 
discrimination between H o  and H I .  For one thing, we would like the 
ratio 

to be as large as possible in the acceptance region W' and to be as 
small as possible in the rejection region 1V. This would mean that, for 
any experimental value of statistic q, me would be relatively unlikely 
to accept the wrong hypothesis. 

We might decide that the best statistic, q, is one which (for a 
given sample size of a given observable characteristic) provides the 
nlininlum @ for any given a. Even when such a best statistic does 
exist, however, the derivation of the form of this best statistic and its 
conditional 3L'DF's may be very difficult. 

Assume that we have developed the form of a model for a physical 
process and that we wish to determine the most desirable values for 
some parameters of this model. The general theory of using experi- 
mental data to estimate such parameters is known as the theory oof 
estimation. 

When ive perform a hypothesis test with a rich set of alternatives, 
the validity of several suggested forms of a model may be under ques- 
tion. For our discussion of estimation, we shall take the viewpoint 
that the general form of our model is not to be questioned. We wish 
here only to estimate certain parameters of the process, given that the 
form of the model is correct. Since stating the form of the model is 
equivalent to  stating the form of the PDF for characteristic x of the 
process, determining the parameters of the model is similar to adjusting 
the parameters of the PDF t,o best acconmodate the experimental data. 

Let Q~(x~,xZ, . . . ;xn) be a statistic whose sample values are a 
function of a sample of size n and whose experimental values are a 
function of n independent experimental values of random variable x. 
Let (2 be a parameter of our model or of its resulting PDF for random 
variable I. We shall be interested in those statistics Qn whose experi- 
mental values happen to be good estimates of parameter Q. Such 
statistics are linown as estit~zators. 

Some examples of useful estimators follow. We might use the 
average value of n experimental values of x, given by 



as an estimate of the parameter E(x). We have already encountered 
this statistic several times. [Although it is, alas, known as the sample 7-8 Some Properties of Desirable Estimators 

mean (M,), we must realize that, like any other statistic, i t  has both A sequence of estimates Q1, Q2, . . . of-parameter Q is called consistent 
sample and experimental values. A similar comment applies to our if i t  converges stochastically to Q as n + w .  That is, Qn is a consistent 
next example of an estimator.] Another example of a statistic which estimator of Q if 
may serve as an estimator is that of the use of the sample variance, 
given by lim Prob((Q, - Q( > 6 )  = 0 for any E > 0 

n-+ a, 

I n  Chap. 6, we proved that, given that az2 is finite, the sample mean 
M ,  is stochastically convergent to E.(x). Thus, the sample mean is a 
consistent estimator of E(x). If'an estimator is known to be consistent, 

to estimate the variance of the PDF for random variable x. For a we would become confident of the.accuracy of estimates based on very 
final example, we might use the maximum of n experimental values of large samples. However, consistency is a limit property and may not 
x, given by be relevant for small samples. 

A sequence of estimates Q1, Q2, . . . of parameter Q is called 
ztnbiased if the expected value of Q, is equal to Q for all values 

to estimate the largest possible experimental value of random variable x. 
Often we are able to suggest many reasonable estimators for a 

particular parameter Q. Suppose, for instance, that it is known that 
fx(xo) is symmetric about E(x), that is, 

That is, Q, is an unbiased estimate for Q if 

E (QJ  = Q for n = 1,2, . . . 

and we wish to estimate E(x) using some estimator Qn(x1,x2, . . . ,xn). 
We might use the estimator 

Q n l  = '2 xin 

We noted (Sec. 7-3) that the sample mean Mn is an unbiased estimator 
for E(x). We also noted that, for the expected value of the sample 
variance, we have 

i =1 

or the estimator and thus the sample variance is not an unbiased estimator of az2. How-

max (x~,xz, . . . , ~ n )- min (~1~x2,  . . . 9%)
" 

ever, it is true that 
Qn2 2 lim E(Sn2) = aZ2 

n-+ a, 

or we could list the xi in increasing order by defining 
Any such estimator Q,, which obeys 

yi = ith smallest member of (xl,xa, . . . ,x.) 

and use for our estimator of E(x) the statistic 
lim E(Q,) = Q 
n+ -
is said to be an asymptotically unbiased estimator of Q. If Qn is an 
unbiased (or asymptotically unbiased) estimator of Q, this property 
alone does not assure us of a good estimate when n is very large. We 

Any of these three estimators might turn out to be the most desirable, should also need some evidence that, as n grows, the PDF for Q, 
depending on what else is known about the form of fx(xo) and also becomes adequately concentrated near parameter Q. 
depending, of course, on our criterion for desirability. The relative eficiency of two unbiased estimators is simply the 

In the following section, we introduce some of the properties ratio of their variances. We would expect that, the smaller the vari- 
relevant to the selection and evaluation of useful eGimators. ance of an unbiased estimator Qn, the more likely it is that an experi- 



mental value of Q, will give an accurate estimate of parameter Q. We 
mould say the ?nost eficient unbiased estimator for Q is the unbiased 
estimator with the nlininlunl variance. 

We now discuss the concept of a suficient estimator. Consider 
the n-dimensional sample space for the values x!, 22, . . . , x,. In 
general, when we go from a point in this space to the corresponding 
value of the estin~ator Q,(zl,x2, . . . ,xn), one of two things must hap- 
pen. Given that our model is correct, either Q, contaitis all the infor- 
mation in the experimental outcon~e ( ~ ~ , 2 ~ ,  . . . ,x,) relevant to  the 
estimation of parameter Q, or i t  docs not. For example, i t  is true for 
some estimation problen~s (and not for some others) that 

contains all the infornlation relevant to the estiniation of Q which may 
be found in (x1,x2, . . . ,xn). The reason we are interested in this 
matter is that we would expect to n~ake  the best use of experimental 
data by using estimators which take advantage of all relevant informa- 
tion in the data. Such estimators arc I;no.cvn as sufficient estimators. 
The formal definition of sufficiency does not follow in a simple form 
from this intuitive discussion. 

To state the mathematical definition of a sufficient estimator, 
we shall use the notation 

& = , x l  x2 " a x, representing an n-dimensional random 
variable 

~XDI = l x l ~  2 2 0  - xno , representing any particular value of a 
Our model provides us with a PDF for A in terms of a parameter Q 

which we wish to estimate. This PDF for a may be written as 

fb(a) = g ( a , Q )  where g is a function only of and Q 

If we are given the experimental value of estimator Qn., this is at  least 
partial information about a and we could hope to use it to calculate 

the resulting conditional PDF for ,z, , 
Sblon(& I Vn) = h ( a  ,Q,Qn) 

where h is a function only of a, Q, and (2,. I f  and only if the I'DF h 

does not depend on pnramcter Q after the value of Q, is given, we 
define Q, to be a sufficient estimator for parameter Q. 

A few comments may help to explain the apparent distance 
between our simple intuitive notion of a sufficient statistic and the 

formal definition in the above paragraph. We are estimating Q because 
we do not li1101v its d u e .  Let us accept for a moment the notion that 
Q is (to US) a raildonl variable and tha t  our linowleledge about it is given 
by some a priori PDT". When we say that a sufficient estimator Q, 
will contain all the information about Q which is to be found in 
(~1~x2, . . . ,xn), the inlplication is that the conditional PDF  for Q, 
given Q., will be identical to the conditional 1'DF for Q, given the values 
@1,.22, . . . ,xn). Because classical statistics does not provide a frame- 
work fog viewing our uncertainties about unknown constants in terms 
of &ch PDF's, the above definition has to be worked around to be in 
terms of other PDF's. . Instead of stating that Q, tells us everything 
about Q which might be found in (xI,x2, . . . , ~ f i ) ,  our formal definition 
states that Qn tells us everything about (x1,z2, . . . ,x,) that we could 
find out by knowing Q. 

In  this section me have discussed the concepts of consistency, 
bias, relative efficiency, and sufficiency of estimators. We should also 
note that actual estimates are normally accompanied by confidence 
limits. The statistician specifies a quantity 6 for which, given that 
his model is correct, the probability that the "random interval" Q, + 6 
will fall such that it happens to include the true value of parameter Q 
is equal to some value such as 0.95 or 0.98. Note that i t  is the location 
of the interval centered about the experimental value of the estimator, 
and not the true value of parameter Q, which is considered to be the 
random phenomenon when one states confidence limits. We shall 
not explore the actual calculation of confidence limits in this text. 
Although there are a few special (simple) cases, the general problem is 
of an advanced nature. 

7-9 Maximum-likelihood Estimation 

There are several ways to obtain a desirable estimate for Q, an 
unknown parameter of a proposed statistical model. One method of 
estimation will be introduced in this section. A rather different 
approach will be indicated in our discussion of Bayesian analysis. 

To use the method of maximum-likelihoodelhood estimation, we 'first 
obtain an experimental value for some sample (x l ,x t ,  . . . ,x,J. We 
then determine which of all possible values of parameter Q maximizes 
the a pl-iori probability of the observed experimental value of the 
sample (or of some statistic of the sample). Quantity Q*, that possible 
value of Q which maximizes this a priori probability, is known as the 
maximum-likelihood estimator for parameter Q. 

The a priori probability of the observed experimental outcome 
is calculated under the assumption that the model is correct. Before 



expanding on the above definition (which is somewhat incomplete) and zero. For this case, let us, for an n-dimensional statistic, view the 
commenting upon the method, we consider a simple example. problem in an n-dimensional event space whose coordinates represent 

Suppose that we are considering a Bernoulli process as the model the n components of the statistic. Our procedure will be to determine 
for a series of coin flips and that we wish to estimate parameter P, that possible value of Q which maximises the a priori probability of 
the probability of heads (or success), by the method of maximum- the event represented by an n-dimensional incremental cube, centered 
likelihood. Our experiment will be the performance of n fiips of the about the point in the event space which represents the observed experi- 
coin and our sample (x1,x2, . . , ,x,) represents the exact sequence mental value of the statistic. 
of resulting Bernoulli random variables. The procedure in the preceding paragraph is entirely similar to 

The a priori probability of any particular sequence of experi- the procedure used earlier for maximum-likelihood estimation when the 
mental outcomes which contains exactly k heads out of a total of n statistic is described by a PAIF. . For the continuous case, we work with 
Aips is given by incremental events centered about the event point representing the 

observed experimental outcome. The result can be restated in asimple 
manner. If the statistic en~ployed is described by a continuous PDF, 

To find P*, the maximum-likelihood estimator for P, we use elementary we maximize the appropriate PDF evaluated at, rather than the proba- 
calculus to determine which value of P, in the range 0 < P < 1, maxi- bility oj, the observed experimental outcome. 
mizes the above a priori probability for any experimental value of k. As an example, suppose that our model for an interarrival proc- 
Differentiating with respect to P, setting the derivative equal to zero, ess is that the process is Poisson. This assumption models the first- 
and checking that we are in fact maximizing the above expression, we order interarrival times as independent random variables, each with 
finally obtain P D F  

In order to estimate A, we shall consider a sample (r,s,t,u,v) composed 
which is the maximum-likelihood estimator for parameter P if we ' of five independent values of random variable x. Our statistic is the 
observe exactly k heads during the n trials. sample itself. The compound PDF for this statistic is given by

In our earlier discussion of the Bernoulli law of large numbers 
(Sec. 6-3) we established that this particular maximum-likelihood esti- 
mator satisfies the definition of a consistent estimator. By performing 
the calculation 

we find that this estimator is also unbiased. hIaximization of this PDF with respect to h for any particular experi- 
Note also that, for this example, maximum-likelihood estimation mental outcome (~so,to,uo,vo) leads to the maximum-likelihood 

based on either of two different statistics will result in the same expres- estimator 
sion for P*. We may use an n-dimensional statistic (the sample itself) 

A* = 5 
which is a finest-grain description of the experimental outcome or we l'o 3- so + to + uo + vo 
may use the alternative statistic k, the number of heads observed. 
(It happens that k / n  is a sufficient estimator for parameter P of a which seems reasonable, since this result states that the maximum- 
Bernoulli process.) likelihood estimator of the average arrival rate happens to be equal to 

We now make a necessary expansion of our original definition of the experimental value of the 'average arrival rate. [We used the 
maximum-likelihood estimation. If the model under consideration (~,,s,t,u,v) notation instead of (x1,x2, . . . ,x,) to enable us to write out 
results in a continuous PDF for the statistic of interest, the probability the compound PDF for the sample in our more usual notation.] 
associated with any particular experimental value of the statistic is Problem 7.15 assists the reader to show that A* is a consistent 
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i 
estimator which is biased but asymptotically unbiased. It also hap- 

F 
yens that A *  (the ~lunlber of interarrival times divided by their sum) ; 
js a sufficient estinlator for parameter X. i 

I n  general, maximum-lilielihood estimators can be shown to have ! 
a surprising number of useful properties, both with regard to theoretical 1 
matters and mith regard to the simplicity of practical application of the 
method. For situations involving very large samples, there are few 
people who disagree mith the reasoning which gives rise to this arbitrary i 
hut most useful estimation technique. fi 

However, serious problems do arise if one attempts to use this , 
estimation technique for decision problems involving small samples or 

I 

if one attempts to establish that maximum likelihood is a truly junda- 
mental technique involving fewer assumptions than other methods of i 
cstin-tation. 4 

Suppose that we have to make a large wager based on the true ivalue of P in the above coin example. There is time to flip the coin 
only five times, and we observe four heads. Very few people would be 

i" 
willing to use the maximum-likelihood estimate for P, a, as their esti- imator for parameter P if there were large stakes involved in the accuracy 
of their estimate. Since maximum likelihood depends on a simple 1 
maximization of an unweighted PDF, there seems to be an uncomfortable Iimplication that all possible values of parameter P were equally likely 
before the experiment was performed. We shall return to this matter 1 

in our discussion of Bayesian analysis. i 

Bayesian Analysis 

A Bayesian believes that any quantity whose value he does not know 
is (to him) a random variable. He believes that i t  i s  possible, a t  any 
time, to express his state of knowledge about such a random variable 
in the form of a PDF. As additional experimental evidence becomes 
available, Bayes' theorem is used to combine this evidence with the 
previous PDF in order to obtain a new a posteriori PDF representing 
his updated state of knowledge. The PDF expressing the analyst's 
state of knowledge serves as the quantitative basis for any decisions 
he is required to make. 

Consider the Bayesian analysis of Q, an unknown parameter of a 
postulated probabilistic model of a physical system. We assume 
that the outcomes of experiments with the system may be described by 
the resulting experimental values of continuous random variable x, the 
characteristic of interest. 

Based on past experience and all other available information, the 
Bayesian approach begins with the specification of a P D F  fQ(Qo), the 

analyst's a priori PDF for the value of parameter Q. As before, the 
model speci'fies the PDF for the sample value of characteristic x, given 
the value of parameter Q. Since we are now regarding Q as another 
random variable, the PDF for the sample value of x with parameter Q 
is to be written as the conditional PDF, 

fTlQ(x0Qo) = conditional PDF for the sample value of characteristic ( 
x, given that the value of parameter Q is equal to Qo 

. Each time an experimental value of characteristic x is obtained, 
the continuous form of Bayes' theorem 

is used to obtain the a, posteriori PDF fh(Qo), describing the analyst's 
new state of knowledge about the value of parameter Q. This 1'DF 
fb(Q0) serves as the basis for any present decisions and also as the a 
priori I'DF for any future experimentation with the physical system. 

The Bayesian analyst utilizes his state-of-knowledge P D F  to 
resolve issues such as: 

1 Given a function C(Qt,Q*), which represents the penalty associated with 
estimating Qr,the true vdue  of parameter Q, by an estimate Q*, deter-
mine that estimator &* which miuimizes the expected value of c(Qt,Q*). 
(For example, see l'rob. 2.05.) 

2 Given the function C(Qt,Q*), which represents the cost of imperfect 
estimation, and given another function which represents, as a function 
of n, the cost of n repeated experiments on the physical system, specify 
the experimental test program which will minimize the expected value 
of the total cost of experinlentation 2nd estimation. 

As one example of Bayesian analysis, assume that a Bernoulli 
model has been accepted for a vain-flipping process and that we wish to 
investigat$e parameter P,the probability of succeis (heads) for this 
model. We shall discuss only a few aspects of this problem. One 
should keep in mind that there is probably a cost associated wit,h each 
flip of the coin and that our general objective is to combine our prior 
corlvictiot~s about the value of P with some experin~ental evidence to 
obtain a suitably accurate and economical estimate P*. 

The Bayesian analyst begins by stating his entire assumptive 
structure in the form of his n priori I'DF fp(Po). Although this is 
necessarily an inexact and somewhat arbitrary specification, no esti- 
mation procedure, classical or Bayesian, can avoid this (or an equiva- 
lent) step. We eoritiriue with the example, deferring a more general 
discussion to Sec. 7-12. 



Four of many possible choices for fp(Po) are shown below: 

and we shall continue our consideration of this relation in the following 
section. 

I n  general, we would expect that, the narrower the a priori PDF 
f,(PO), the more the experimental evidence required to obtain an a 
posteriori PDF which is appreciably different from the a priori YDF. 
For very large amounts of experimental data, we would expect the 
effect of this evidence to dominate all but the most unreasonable a 
priori PDF's, with the a posteriori PDF fk(p0)becoming heavily con- 
centrated near the true value of parameter P. 

7-11 Complementary PDF's for Bayesian Analysis 

A priori PDF @ could represent the prior convictions of one 
who believes, "Almost all coins are fair or very nearly fair, and I don't 
see anything special about this coin." If it is believed that the coin is 
probably biased, but the direction of the bias is unknown, P D F  @ 
might serve asjp(PO). There might be a person who claims, "I don't 
know anything about parameter P, and the least biased approach is 
represented by PDF @." Finally, PDG @ is the a priori state of 
linowledge for a person who is certain that the value of P is equal to 
0.75. In  fact, since PDF @ allocates all its probability to this single 
possible value of P, there is nothing to be learned from experimentation. 
For PDI?0,the a posteriori PDF will be identical.to the a priori PDF, 
no matter what experimental outcomes may be obtained. 

Because the design of complete test programs is too involved for 
our introductory discussion, assume that some external considerations 
have dictated that the coin is to be flipped exactly N o  times. We 

For the Bayesian analysis of certain parameters of common proba- 
bilistic processes, such as the-situation in the example of Sec. 7-10, some 
convenient and efficient procedures have been developed. 

The general calculation for an a posteriori PDF is unpleasant, 
and although it  may be performed for any a priori PDF, i t  is unlikely 
to yield results in a useful form. To simplify his computational burden,' 
the Bayesian often takes advantage of the obviously imprecise specifi- 
cation of his a priori state of knowledge- In  particular, he elects that, 
whenever i t  is possible, he will select the a priori PDF from a family 
of PDF's which has the following three properties: 

1 The family should be rich enough to allow him to come reasonably 
close to a statement of his subjective state of knowledge. 

2 Individual members of the family should be determined by specifying 
the value of a few parameters. It would not be realistic to pretend 
that the a priori P D F  represents very precise information. 

wish to see how the experimental results .(exactly KO heads in No tosses) 
are used to update the original a priori PDF  fP(PO). 

The Bernoulli model of the process leads us to the relation 

3 The family should make the above updating calculation as simple as 
possible. In  particular, if one member of the family is used as the 
a priori PDF, then, for any possible experimental outcome, the result- 
ing a posteriori P D F  should simply be another member of the family. 
One should be able to carry out the updating calculation by merely 
using the experimental results to modify the parameters of the a priori 

where we are using a PMF because of the discrete nature of K, the P D F  to obtain the a posteriori PDF, 
characteristic of interest. The equation for using the experimental 
outcome to update the a priori PDF fp(Po) to  obtain the a posteriori 
PDF  fk(p0) is thus, from substitution into the continuous form of 
Bayes' theorem, found to be, 

The third item in the above list is clearly a big order. We shall 
not investigate the existence and derivation of such families here. 
However, when families of PDF's with this property do exist for the 

, 



estinlation of parameters of probabilistic processes, such PDF's are I'DF for our example, establishes that if the Bayesian starts out with 

said to be conrplententa~y(or conjugate) PDF's for the process being the a. priori PDF 
studied. A demonstration will be presented for the example of the 
previous section. 

Consider the beta PDF for random variable P with parameters and then observes exactly KO successes in NOBernoulli trials, the 

Ira and no. It is c'onvenient to write this PDF as @p(Po ko, no), resulting a posteriori 1'DF is 

defined by 
O _ < P , = g  

aP(POI kg, no) = C(ko,no)Poku-l(l- Po)~o-~Q- '  ko 2 0 Thus, for the estimation of parameter P for a Bernoulli model, use of 
no 2 ko n bet,a I'DF forJp(P0) allows the a posteriori PDF to be determined by 

. 

merely using tlhe experimental values KOand No to modify the parame- 
where C(ko,no) is sinlply the nornmlization constant t.ers of the a priori I'DF. Using the above sketch, we see, for instance, 

that, if jp(P0) were the beta PDF with 60 = 3 and no= 6, an experi-
C(ko,no)= [/p:=o Pokc l ( l- Po)nu-ku-l dPo I-' mentnl outconle of two successes in two trials would lead to the 

and several nlenlbers of this fsnlily of I'DF's are shown below: a posteriori beta I'D12 with ko = 5 and no = 8. 
I t  is often the mse, as it is for our example, that the determina- 

tion of parameters of the a priori PDF can be interp'retedas assuming 
a certain "equiv:dent past experience." For instance, if the cost 
structure is such that we shall choose our best estimate of parameter 
P to be the expectation of the a posteriori PDF, the resulting estimate 
of parametix P, which we call P*,turns out to be 

This same result could have been obtained by the method of maxirnum- 
1il;elihood estimation, had we agreed to combine a bias of ko successes 
in no hypothet,ical trials with the actual experimental data. 

Finally, we remark that the use of the beta family for estimating 
pnramter P of a Bernoulli process has several other advantages. It 
renders quite simple the otherwise most awkward calculations for what 
is 1~non.nas preposterior analysis. This term refers to an exploration 
of the nature of the a posteriori PDF and its consequences before the 
tests are performed. I t  is this feature which allows one to optimize a 
test program and design effective experiments without becoming 
bogged down in .hopelessly involved detailed calculations. 

An individunl nlcnlher of this family may be specified by sclcet- 
ing vnlues for its illean :md v:~riarl(~c rather than by sclcrting ronst:ults 
ko  and no directly. Although tcrhniqucs lxivc been developed to allow 
far more structured I'DF's, the I3aycsi:ul often finds t.hnt thcsc two 
paran~etersE ( P )  and od allow for an adequate expressio~l of his prior 
beliefs about the unlinown parameter P of n Bernoulli model. 

Direct substitution into the rclstion for Jb(P.), thc i~ posteriori 

7-12 Some Comments on Bayesian Analysis and Classical Statistics 

There is n large literature, both mathematical and philosophical, deal- 
ing with the relationship between classicrtl statistics and Bayesian 
analysis. In order to i~idirnte some of the considerations in a relatively 
brief manner, some inlprecise generulizations necessarily appear in the 
foIIon-ing discwssion. 

The Bnyesinn approach represents a significant departure from 



the more conservative classical techniques of statistical analysis. 
Classical techniques are often particularly appropriate for purely 
scientific investigations and for matters involving large samples. 
Classical procedures attempt to require the least severe possible 
assumptive structure on the part of the analyst. Bayesian analysis 
involves a more specific assumptive structure and is often described as 
being decision-oriented. Some of the most productive applications of 
the Bayesian approach are found in situations where prior convictions 
and a relatively small amount of experimentation must be combined 
in a rational manner to make decisions among alternative future courses 
of action. 

There is appreciable controversy about the degree of the differ-
ence between classical and Bayesian statistics. The Bayesian states 
his entire assumptive structure in his a priori PDF;  his methods require 
no further arbitrary steps once this PDF  is specified. I t  is true that 
he is often willing to state a rather sharp a priori P D F  which heavily 
weights his prior convictions. But the Bayesian also points out that 
all statistical procedures of any type involve similar (although possibly 
weaker) statements of prior convictions. The assumptive structures 
of classical statistics are less visible, being somewhat submerged in 
established statistical tests and the choice of statistics. 

Any two Bayesians would begin their analyses of the same 
problem with somewhat different a priori PDF's. If their work led 
to conflicting terminal decisions, their different assumptions are 
apparent in their a priori PDF's and they have a clear common ground 
for further discussions. The common ground between two different 
classical procedures which result in conflicting advice tends to be less 
apparent. 

Objection is frequently made to the arbitrary nature of the 
a priori PDF used by the Bayesian. One frequently hears that this 
provides an arbitrary bias to what might otherwise be a scientific 
investigation. The Bayesian replies that all tests involve a form of 
bias and that he prefers that his bias be rational. For instance, in 
considering the method of maximum likelihood for the estimation of 
parameter P of a Bernoulli process, we noted the implication that all 
possible 'values of P were equally likely before the experiments. 
Otherwise, the method of maximum likelihood would maximize a 
weighted form of that function .of P which represents the a priori proba-
bility of the observed experimental outcome. 

Continuing this line of thought, the Bayesian contends that, for 
anybody who has ever seen a coin, how could any bias be less rational 
than that of a priori PDF  @ in the example of Sec. 7-10? Finally, he 
would note that there is nothing fundamental in starting out with a 

uniform P D F  over the possible values of P as a manifestation of 
"minimum bias." Parameter P is but one arbitrary way to charac-
terize the process; other parameters might be, for example, 

and professing that all possible values of one of these parameters be 
equally likely would lead to different results from those obtained by 
assuming the uniform PDF over all possible values of parameter P. 
The Bayesian believes that, since it  is impossible to avoid bias, one can 
do no better than to assume a rational rather than naive form of bias. 

We should remark in closing that, because we considered a par-
ticularly simple estimation problem, we had at  our disposal highly 
developed Bayesian procedures. For multivariate problems or for 
tests of nonparametric hypotheses, useful Bayesian formulations do 
not necessarily exist. 

, 

P R O B L E M S  

---
----1-- 7.01 Random variable M., the sample mean, is defined to be the average--= value of n independent experimental values of random variable x.=----
--= Determine the exact P D F  (or PMF) for M, and its expected value and 
i----- variance if:---

-------- and we do not know the value of r. For the following questions,------= assume that the form of our model is correct. 
=---= a We may use the average value of 48 independent experimental values--
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----of random variable s to estimate the value of 1. from the relation ----
--- 7.06 Random variable x is known to be described by the PDF 
x-

What is the probability that our estimate of 1. obtained in this way 
will be within 50.01 of the true value? Within L-0.05 of the true 
value? -----

b We may use the largest of our 48 experimental values as our estimate -------- but we do not know the value of parameter A.  Consider the following 
= statistics, each of which is based on a set of five independent experi--of the quantity r + 1, thus obtaining another estimate of the value of ---= 

parameter r. What is the probability that our estimate of r e  obtained -= --- mental values (xl,xz, . . . ,xJ of random variable x: 

this way is within (+0,-0.02) of the true value? Within 
(+0, -0.10) of the true value? 

a Use methods similar to those of Sec. 7-3 to derive s reasonably 
simple expression for the variance of the sample variance. We wish to test the hypothesis A = 2.0 a t  the 0.5 level of significance.

b Does the sequence of sanzple variances (S12,SZ2,. . .) for a Gaussian (A significance test usirig statistic r ,  for example, is referred to as T..)
random variable obey the weali law of large numbers'? Explain. 

Without doing too much work, can you suggest possible values 
of the data (xl,xZ,. . . ,x5) which would result in:

7.04 There are 240 students in a literature class ("l'roust, Joyce, Kaflia, 
Yand Xicliey Spillane"). Our model states that x, the numerical grade a Acceptance only on T, (and rejection on T, and TI) Acceptance 

only on T,? Acceptance only on TtY
for any individual student, is an independent Gaussian random variable 

b Rejection only on Tr (and acceptance on T.  and Tt)? Rejectionwith a standard deviation equal to 10 1/Z. Assuming that our model 
only on T,Y Rejection only on T,?

is correct, we wish to perform a significance test on the hypothesis that 
E(x) is equal to 60. ---- c Acceptance on all three tests? Rejection on all three tests? 

---
Determine the highest and lowest class averages which will ----= If the hypothesis is accepted on all three tests, does that mean--

result in the acceptance of this hypothesis: =--- i t  has passed an equivalent single significance test a t  the 1 - (0.$3----a At the 0.02 level of significance --=.- level of significance?---b At the 0.50 level of significance ----
-EZ 7.07 Al, the bookie, plans to place a bet on the number of the round in------

7.05 We have accepted a Bernoulli model for a certain physical process ---=- which Bo >might li110ck out Ci in their coming (second) fight. A1--
involving a series of discrete trials. We wish to perform a significance -=---- assumes only the following details for his model of the fight:--
test on the hypothesis that P, the probability of success on any trial, -----

-- 1 Ci can survive exactly 50 solid hits. The 51st solid hit (if there is--
is equal to 0.50. Determine the rejection region for tests a t  the 0.05 ----- one) finishes Ci. --
level of significance if we select as our statistic --- 2 The times between solid hits by Bo are independent random variables --a Random variable I., the number of trials up to and including the ------ with the P D F  

-
900th success 

b Random variable s, the number of successes achieved in a total of -----
1,800 trials ----- 3 Each round is three minutes. ------

=The expected number of coin flips for each of these significance ----- A1 hypothesizes that X = & (hits per second). Given the--
tests is equal. Discuss the relative merits of these tests. Consider . --- result of the.previous fight (Ci won), a t  what significance level can A1------
the two ratios or/E(r) and s,/E(s). Is the statistic with the sn~sller ' = -= 

- accept his hypothesis Ho(X = A)? In  the first fight Bo failed to come----standard-deviation to expected-value ratio neccssarily the better ---- out for round 7-43  lasted at  least six rounds. Discuss any additional---
statistic? =--- assumptions you make. 

--



7.08 We are sure that the individual grades in a class are normally dis- 
tributed about a mean of 60.0 and have standard deviation's equal to 
either 5.0 or 8.0. Consider a hypothesis test of the null hypothesis 
Ho(a = 5.0) with a statistic which is the experimental value of a single 
grade. 
a Determine the acceptance region for Ho if we wish to set the condi- 

tional probability of false rejection (the level of significance) a t  0.10. 
b For the above level of significance and critical region, determine the 

conditional probability of acceptance of Ho, given a = 8.0. 
c How does increasing the number of experimental values averaged in 

the statistic contribute to your confidence in the outcome of this 
hypothesis test? 

d Suggest some appropriate statistics for tr hypothesis test which is 
intended to discriminate between Ho(a = 5.0) and Hl(a = 8.0). 

e If we use H1 as a model for the grades, what probability does j t allot 
to grltdes less than 0 or greater than loo? 

7.09 A random variable x is known to be characterized by either a Gaussian 
PDF with E(x) = 20 and v, = 4 or by a Gaussian PDF with E(x) = 25 
and a, = 5. Consider the null hypothesis Ho[E(x) = 20, a, = 41. We 
wish to test H o  at  the 0.05 level of significance. Our statistic is to be 
the sun1 of three experimental values of random variable x. 
a Determine the conditional probability of false acceptance of Ho. 
b Determine the conditional probability of false rejection of Ho. 
c Determine an upper bound on the probability that we shall arrive a t  

an incorrect conclusion from this hypothesis test. 
d If we agree that one may assign an a priori probability of 0.6 to the 

event that Ho is true, determine the probabilities that this hypothesis 
test will result in: 

i False acceptance of Ho 
ii False rejection of Ho  
iii An incorrect conclusion 

7.10 A random variable x is known to be the sun1 of k independent 
identically distributed exponential random variables, each with an 
expected value equal to (kX)-I. We have only two hypotheses for the 
value of parameter k ;  these are Ho(k = 64) and H l(k = 400). Before 
we obtain any experimental data, our a priori guess is that these two 
hypotheses are equally likely. 

The statistic for our hypothesis test is to be the sum of four 
independent experimental values of x. We estimate that false accept- 
ance of Ho  will cost us $100, false rejection of Ho will cost us $200, and 
any correct outcome of the test is worth $500 to us. 

PROBLEMS 261 

Determine approximately the rejection region for Ho  which 
maximizes the expected value of the outcome of this hypothesis test. 

7.11 A Bernoulli process satisfies either Ho(P = 0.5) or Hl (P  = 0.6). 
Using the number of successes observed in n trials as our statistic, we 
wish to perform a hypothesis test in which a, the conditional probability 
of false rejection of Ho, is equal to 0.05. What is the smallest value of 
n for which this is the case if 8, the conditional probability of false 
acceptance of Ho, must also be no greater than 0.05? 

7.12 A hypothesis test based on the statistic 

M, = 
X l + X 2 +  . . +xn - 

n 

is to be used to choose between two hypotheses 

for the ]'Dl? of random variable x which is known to be Gaussian. 
, ' 

a Nalie a sketch of the possible points (a,@) in an a,B plane for the 
eases n = 1 and n = 4. (a and B are, respectively, the conditional 
probabilities of false rejection and false acceptance.) 

b Sketch the ratio of the two conditional PDF's for random variable 
I l l ,  (given Ho, given H1) as a. function of dd, for the cases n = 1 and 
n = 4. Discuss the properties of a desirable statistic that might be 
exhibited on such a plot. 

7.13 Expanding on the statement of Prob. 7.06, consider the statistic 

Sn = max (~1~x2, . . . ,xn) 

as an estimator of parameter A. 
a Is this estimator biased? Is it asymptotically biased? 
b Is this estimator consistent? 
c Carefully determine the maximum-lilielihood estimator for A, based 

only on the experimental value of the statistic s,. 
, 

7.14 Suppose that we flip a coin until we observe the Zth head. Let n be 
the number of trials up to and including the lth head. Determine the 
maximum-likelihood estimator for P, the probability of heads. 
Another experiment would involve flipping the coin n (a predetermined 
number) times and letting the random variable be 1, the number of 
heads in the n trials. Determine the maximum-likelihood estimator 
for P for the latter experiment. Discuss your results. 



---------
- 7.15 We wish to estimate A for a Poisson process. If we let (x1,x2,. . . ',z,) 
---
= be independent ex'perimental values of n first-order interarrival times,------ we find (Sec. 7-9) that A,*,, the maximum-likelihood estimator for  A, is----
---- giv.en by 

a Show that B(x,*) = nA/(n - 1). 
b Determine the exact value of the variance of random variable A,* as 

a function of n and A. 
c Is A,* a biased estimator for A? Is it asymptotically biased? 
d Is A: a consistent estimator for A ?  
e Rased on what we know about A:, can you suggest a desirable 

unbiased consistent estimator for A? 
Another type of maximum-likelihood estimation for the parame-

ter A of a.Poisson process appears in the following problem. 

7.16 Assume that it is known that occurrences of a particular event con-
SL Poisson process in time. We wish to investigate the parame-~ t i t ~ t ~  

ter A, the average number of arrivals per minute. 
a In  a predetermined period of T minutes, exactly n arrivals are 

observed. Derive the maximum-likelihood estimator A* for X based 
on this data. 

b In  10,000minutes 40,400 arrivals are observed. At what significance 
level would the hypothesis A = 4 be accepted? 

c Prove that the maximum-likelihood estimator derived in (a) is an 
unbiased estimator for A. 

d Determine the variance of A*. 
e Is A* a consistent estimator for A? 

---
EZ-- 7.17 The volumes of gasoline sold in a month a t  each of nine gasoline----
= stations may be considered independent random variables with the PDF---

fv(vO)= -1 
e - [ ~ r - E ( ~ ) 1 9 1 2 f f v P  - 00 _< v0 5 +- 00

d2.rr a, 
a Assuming thato. = 1,find E*, the maximum-likelihood estimator for 

E(2,) when we are given only V, the total gasoline sales for all nine sta-
tions, for a particular month. 

b Without making any assumptions about a,,determine a: and E*, the 
maximum-likelihood .estimators for a, and E(v). 

c Is the value of E* in (b) an unbiased estimator for E(v)? 

---------
EZ- 7.18 Consider the problem of estimating the parameter P (the probability
=-----
----- of heads) for a particular coin. To  begin, we agree to assume the= 
-- following a priori probability mass function for P: 

---
=- We are now told that the coin was flipped n times. The first----= flip resulted in heads, and the remaining n - 1 flips resulted in tails.=--==:--- Determine the a posteriori PAIF for P as a function of n for 
= n >_ 2. Prepare neat sketches of this function for n = 2 and for n = 5.=--
5=- 7.19 Given a coin from a particular source, we decide that parameter P--
L--== (the probability of heads) for a toss of this coin is (to us) a random 
5
= variable with probability density function-= -
= L
s if o 5 P, 5 I= - fppo) ( gK(1 - Po)'Po8 _-- otherwiseL 
--C= 
---- We proceed to flip the coin 10 times and note an experimental outcome 
=--
-- of six heads and four tails. Determine, within a nornlahing constant, 
= = the resulting a posteriori PDF for random variable P.-=a
-
=E= 7.20 Consider a Bayesian estimation of A, the unknown average arrivals z  
=----- rate for a Poisson process. Our state of knowledge about A leads us to=--= describe it  as a random variable with the PDF= 

where k is a positive integer. 
a If we observe the proc&s for a predetermined interval of T units of 

time and observe exactly N arrivals, determine the a posteriori PDF 
for random variable A. Speculate on the general behavior of this 
PDF for very large values of T. 

b Determine the expected value of the a priori and a posteriori PDF's. 
for A. Comment on your results. 

c Before the experiment is  performed, we are required to give an esti-
mate Ac for the true value of A. We shall be paid 100 - 500(XG- A ) 2  
dollars as a result of our guess. Determine the value of A. which 
maximizes the expected value of the guess. 




