McGraw-Hill Classic Textbook Reissue Series

AMYX, BASS and WHITING: Petroleum Reservoir Engineering: Physical Properties
CHOW: Open-Channel Hydraulics
DAVENPORT: Probability Random Process: An Introduction for Applied Scientists and Engineers
DRAKE: Fundamentals of Applied Probability Theory
GOODMAN: Introduction to Fourier Optics
HARRINGTON: Time-Harmonic Electromagnetic Fields
HINZE: Turbulence
KAYS and CRAWFORD: Convective Heat and Mass Transfer
KRYNINE and JUDD: Principles of Engineering Geology and Geotechnics MEIROVITCH: Methods of Analytical Dynamics
MELSA and SCHULTZ: Linear Control Systems
MICKLEY, SHERWOOD and REED: Applied Mathematics in Chemical Engineering
PAPOULIS: The Fourier Integral and Its Applications
PHELAN: Fundamentals of Mechanical Design
SCHLICHTING: Boundary Layer Theory
SCHWARTZ and SHAW: Signal Processing: Discrete Spectral Analysis,
Detection, and Estimation
TIMOSHENKO: Theory of Plates and Shells
TIMOSHENKO and GOODIER: Theory of Elasticity
TIMOSHENKO and GERE: Theory of Elastic Stability
TREYBAL: Mass-Transfer Operations
TRUXAL: Introductory Systems Engineering
WARNER and McNEARY: Applied Descriptive Geometry
WELLMAN: Technical Descriptive Geometry

Operations Research Center and Department of Electrical Engineering Massachusetts Institute of Technology

fundamentals
of
applied probability theory

New York St. Louis San Francisco McGraw-Hill, Inc. Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

fundamentals of applied probability theory

freedom and opportunity
Copyright © 1967 by the McGraw-Hill Book Company Inc. Reissued 1988 by the McGraw-Hill Book Company, Inc.

Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.
Library of Congress Catalog Card Number 67-11205
ISBN ロ-ロ7-01781.5-3

222324252627 BKMBKM 9987654

This is a first textbook in applied probability theory, assuming a background of one year of calculus. The material represents a onesemester subject taught at M.I.T. to about 250 students per year, most of whom are in the Schools of Engineering or Management. About two-thirds of these students are undergraduates. The subject, Probabilistic Systems Analysis, serves both as a terminal course and as a prerequisite for more advanced work in areas such as communication theory, control systems, decision theory, operations research, quantitative management, statistics, and stochastic processes.

My intention is to present a physically based introduction to applied probability theory, with emphasis on the continuity of fundamentals. A prime objective is to develop in the new student an understanding of the nature, formulation, and analysis of probabilistie situations. This text stresses the sample space of representation of probabilistic processes and (especially in the problems) the need for explicit modeling of nondeterministic processes.

In the attempt to achieve these goals, several traditional details have either been omitted or relegated to an sppendix. Appreciable effort has been made to avoid the segmentation and listing of detailed applications which must appear in a truly comprehensive work in this area. Intended primarily as a student text, this book is not suitable for use as a general reference.

Scope and Organization

The fundamentals of probability theory, beginning with a diseussion of the algebra of events and concluding with Bayes' theorem, are presented in Chapter 1. An axiomatic development of probability theory is used and, wherever possible, concepts are interpreted in the sample space representation of the model of an experiment (any nondeterministic process). The assignment of probability measure in the modeling of physical situations is not necessarily tied to a relative frequency interpretation. In the last section of this chapter, the use of sample and event spaces in problems of enumeration is demonstrated.

Chapter 2 is concerned with the cxtension of earlier results to deal with random variables. This introductory text emphasizes the local assigunent of probability in sample space. For this reason, we work primarily with probability density functions rather than cumulative distribution functions. My experience is that this approach is much more intuitive for the beginning student. Random-variable concepts are first introduced for the discrete case, where things are particularly simple, and then extended to the continuous case. Chapter 2 concludes with the topic of derived probability distributions as obtained directly in sample space.

Discrete and continuous transform techniques are introduced in Chapter 3. Several applications to sums of independent random variables are included. Contour integration methods for obtaining inverse transforms are not discussed.

Chapters 4 and 5 investigate basic random processes involving, respectively, independent and dependent trials.

Chapter 4 studies in some detail the Bernoulli and Poisson processes and the resulting families of probability mass and density functions. Because of its significance in experimentation with physi-
cal systems, the phertomenon of random incidence is introduced in the last section of Chapter 4.

Discrete-state Markov models, including both discrete-transition and continuous-transition processes, are presented in Chapter 5. The deseribing equations and limiting state probabilities are treated, but closed form solutions for transient behavior in the general case are not discussed. Common applications are indicated in the text and in the problems, with most examples based on relatively simple birth-and-death processes.

Chapter 6 is concerncd with some of the basic limit theorems, both for the manner in which they relate probabilities to physically observable phenomena and for their use as practical approximations. Only weak statistical convergence is considered in detail. A transform development of the central limit theorem is presented.

The final chapter introduces some common issues and techniques of statistics, both classical and Bayesian. My objectives in this obviously incomplete chapter are to indicate the nature of the transition from probability theory to statistical reasoning and to assist the student in developing a critical attitude towards matters of statistical inference.

Although many other arrangements are possible, the text is most effectively employed when the chapters are studied in the given order.

Examples and Home Probloms

Many of the sections which present new material to the student contain very simple illustrative examples. More structured examples, usually integrating larger amounts of material, are solved and discussed in separate sections.

For the student, the home problems constitute a vital part of the subject matter. It is important that he develop the skill to formulate and solve problems with confidence. Passive agreement with other people's solutions offers litule future return. Most of the home problems following the chapters are original, written by the author and other members of the teaching staff.

These problems were written with definite objectives. In particular, wherever possible, we have left for the student a considerable share in the formulation of physical situations. Occasionally, the probability assiguments directly relevant to the problems must be derived from other given information.

It did not seem feasible to sample the very many possible fields of application with other than superficial problems. The interesting aspects of each such field often involve appreciable specialized structure and nomenclature. Most of our advanced problems are based on
relatively simple operational situations. From these common, easily communicated situations, it seemed possible to develop compact representative problems which are challenging and instructive.

The order of the problems at the end of each chapter, by and large, follows the order of the presentation in the chapter. Although entries below are often not the most elementary problems, relatively comprehensive coverage of the material in this text is offered by the following skeleton set of home problems:

1.03	2.04	3.05	4.05	5.05	6.02	7.04
1.08	2.07	3.08	4.09	5.06	6.03	7.06
1.09	2.11	3.09	4.12	5.10	6.04	7.08
1.12	2.17	3.10	4.13	5.12	6.07	7.15
1.13	2.26	3.12	4.17	5.13	6.08	7.16
1.21	2.27	3.13	4.18	5.14	6.13	7.19
1.24	2.28	3.21	4.22	5.16	6.17	7.20
1.30	2.30					

Some Clerical Notes

I have taken some liberties with the usual details of presentation. Figures are not numbered but they do appear directly in context. Since there are few involved mathematical developments, equations are not numbered. Whenever it appeared advantageous, equations were repeated rather than cross-referenced.

Recommended further reading, including a few detailed references and referrals for topics such as the historical development of probability theory are given in Appendix 1. Appendix 2 consists of a listing of common probability mass and density functions and their expected values, variances, and transforms. Several of these probability functions do not appear in the body of the text. A brief table of the cumulative distribution for the unit normal probability density function appears in context in Chapter 6.

The general form of the notation used in this text seems to be gaining favor at the present time. To my taste, it is one of the simplest notations which allows for relatively explicit communication. My detailed notation is most similar to one introduced by Ronald A. Howard.

Acknowledgments

My interest in applied probability theory was originally sparked by the enthusiasm and ability of two of my teachers, Professors George P. Wadsworth and Ronald A. Howard. For better or worse,
it is the interest they stimulated which led me to this book, rather than one on field theory, bicycle repair, or the larger African beetles.

Like all authors, I am indebted to a large number of earlier authors. In this case, my gratitude is especially due to Professors William Feller, Marek Fisz, and Emanuel Parzen for their excellent works.

Teaching this and related material during the past six years has been an exciting and rewarding experience, due to the intensity of our students and the interchange of ideas with my colleagues, especially Dr. Murray B. Sachs and Professor George Murray. The many teaching assistants associated with this subject contributed a great deal to its clarification. Some of the problems in this book represent their best educational (and Machiavellian) efforts.

During the preparation of this book, I had many productive discussions with Professor William Black. In return for his kindness, and also because he is a particularly close friend, I never asked him to look at the manuscript. Professor Alan V. Oppenheim and Dr. Ralph L. Miller were less fortunate friends; both read the manuscript with great care and offered many helpful suggestions. The publisher's review by Dr. John G. Truxal was most valuable.

Some award is certainly due Mrs. Richard Spargo who had the grim pleasure of typing and illustrating the entire manuscript-three times! My devoted wife, Elisabeth, checked all examples, proofread each revision of the manuscript, and provided unbounded patience and encouragement.

Finally, I express my gratitude to any kind readers who may forward to me corrections and suggestions for improvements in this text.

Alvin W. Drake
Proface vil
Events, Sample Space, and Probabllity 1
1-1 A Brief Introduction to the Algebra of Events 2
1-2 Sample Spaces for Models of Experiments 5
1-3 Probability Measure and the Relative Likelihood of Events 10
1-4 Conditional Probability and Its Interpretation in Sample Space 13
i-5 Probsbility Trees for Sequential Experimenta 16
1-6 The Independence of Events 17
1-7 Examples 19
1-8 Bryes' Theorem25
27
2. Random Variables 41
2-1 Random Variables and Their Event Spaces 42
2-2 The Probability Mass Function 44
2-3 Compound Probability Mass Functions 46
2-4 Conditional Probability Mass Functions 48
-5 Independence and Conditional Independence of Random Variables 51
6 Functions of Random Variables 52
2-7 Expectation and Conditional Expectation 53
2-8 Examples Involving Discrete Random Variables 57
2-9 A Brief Introduction to the Unit-impulse Function 63
2-10 The Probability Density Function for a Continuous Random Variable 64
2-11 Compound Probability Density Functions 69
2-12 Conditional Probability Density Functions 72
2-13 Independence and Expectation for Continuous Random Variables 74
2-14 Derived Probability Density Functions 74
2-15 Examples Involving Continuous Random Variables 78
3. Transforms and Some Applications to Sums of independent Random Variables 97
3-1 The s'Transform 98
3-2 The z Transform 99
3-3 Moment-generating Properties of the Transforms 100
3-4 Sums of Independent Random Variables; Convolution 103
3-5 The Transform of the PDF
for the Sum of Independent Random Variables 106
3-6 A Further Note on Sums of Iudependent Random Variables 107
3-7 Sum of a Random Number
3-7 Sum of a Random Number of Independent Identically Distributed Random Variables 109
3-8 An Example, with Some Notes on Inverse Transforms 112
3-9 Where Do We Go from Here? 116
4. Some Basic Probabilistic Processes 123
4-1 The Bernoulli Process 124
4-2 Interarrival Times for a Bernoulli Process 126
4-3 Summary of the Bernoulli Process 129
4-4 An Example
130
130
45 The Poisson Process 133
4-6 Interarrival Times for the Poisson Process 137
4.7 Some Additional Properties of Poisson Processes and Poisson Random Variables 139
4-8 Summary of the Poisson Process 140 142
$4-9$ Examples
$4-9$ Examples
4-10 Renewal Processes 148
4-11 Random Incidence 149
5. Discrete-state Markov Processes 163
5-1 Series of Dependent Trials for Discrete-state Processes 164
5-2 Discrete-state Discrete-transition Markov Processes 164
5-3 State Classification and the Concept of Limiting-state Probabilities 167
5-4 The Ergodic Theorem 170
5-5 The Analysis of Discrete-state Discrete-transition Markov Processes 171
5-6 Examples Involving Discrete-transition Markov Processes 175
5-7 Discrete-state Continuous-transition Markov Processes 180
5-8 Examples Involving Continuous-transition Processes 185
6. Some Fundamental Limit Theorems 203
6-1 The Chebyshev Inequality 204
6-2 Stochastic Convergence 205
6-3 The Weak Law of Large Numbers 206
6-4 The Gaussian PDF 207
6-5 Central Limit Theorems 212
6-6 Approximations Based on the Central Limit Theorem 215
6-7 Using the Central Limit Theorem for the Binomial PMF 216
6-8 The Poisoon Approximation to the Binomial PMF 219
6-9 A Note on Other Types of Convergence 220
7. An Introduction to Statistics 229
7-1 Statistics Is Different 230
7-2 Statistical Models and Some Related Lssues 230
7-3 Statistics: Sample Values and Experimental Values 231
7-4 Significance Teating 234
7-5 Parametric and Nonparametric Hypotheses 239
7-6 Hypothesis Testing 240
7-7 Estimation
7-8 Some Properties of Desirable Estimators 243
7-9 Maximum-likelihood Estimation245
7-10 Bayesian Analysis 247
250
7-11 Complementary PDF's for Bayesian Analysis 253
7-12 Some Comments on Bayesian Analysis and Classical Statistics 255
Appendix 1. Further Reading 265
Appendix 2. Common PDF's, PMF's, and Their Means, Variances, and Transforms 271

