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Solutions to Problem Set 2 

Problem 1. Use induction to prove that the following inequality holds for all integers 
n ≥ 1. 

1 3 5 · · · (2n + 1) 1· ·
2 4 6 · · · (2n + 2) 

≥ 
2n + 2 · ·

Solution. We use induction. Let P (n) be the proposition that: 

1 3 5 · · · (2n + 1) 1· ·
2 4 6 · · · (2n + 2) 

≥ 
2n + 2 · ·

First, we prove P (0). In this case, both side of the inequality are equal to 1/2, and so the 
inequality holds. Next, for each n ≥ 0, we must show that P (n) implies P (n+1). Assume 
that P (n) is true. Then we can reason as follows: 

1 3 5 · · · (2n + 1)(2n + 3) 1 2n + 3 · ·
2 4 6 · · · (2n + 2)(2n + 4) 

≥ 
2n + 2 

· 
2n + 4 · ·

1 
> 

2n + 4 

The first step uses the induction hypothesis, P (n). The second step uses the fact that 
(2n + 3)/(2n + 2) > 1 for all n ≥ 1. Therefore, by induction, the proposition P (n) is true 
for all n ≥ 1, and the claim is proved. � 
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Problem 2. This term in 6.042, we’re constantly trying to divide a class of n students into 
groups of either 4 or 5 students. 

(a) Let’s try to use strong induction prove that a class with n ≥ 8 students can be divided 
into groups of 4 or 5. 

Proof. The proof is by strong induction. Let P (n) be the proposition that a recitation with 
n students can be divided into teams of 4 or 5. 

First, we prove that P (n) is true for n = 8, 9, or 10 by showing how to break classes of 
these sizes into groups of 4 or 5 students: 

8 = 4 + 4 

9 = 4 + 5 

10 = 5 + 5 

Next, we must show that P (8), . . . , P (n) imply P (n + 1) for all n ≥ 10. Thus, we assume 
that P (8), . . . , P (n) are all true and show how to divide up a class of n + 1 students into 
groups of 4 or 5. We first form one group of 4 students. Then we can divide the remaining 
n− 3 students into groups of 4 or 5 by the assumption P (n− 3). This proves P (n+1), and 
so the claim holds by induction. 

This proof contains a critical logical error. (In fact, the claim is false!) Identify the first 
sentence in the proof that does not follow and explain what went wrong. 

Solution. The first error is in the sentence: 

Then we can divide the remaining n − 3 students into groups of 4 or 5 by the 
assumption P (n− 3). 

If n = 10, then P (n − 3) = P (7), which is not among our assumptions P (8), . . . , P (n). In 
this case, P (n + 1) = P (11) is actually false. � 

(b) Provide a correct strong induction proof that a class with n ≥ 12 students can be 
divided into groups of 4 or 5. 

Solution. The proof is by strong induction. Let P (n) be the proposition that a recitation 
with n students can be divided into teams of 4 or 5. 

First, we prove that P (n) is true for n = 12, 13, 14, and 15 by showing how to break classes 
of these sizes into groups of 4 or 5 students: 
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12 = 4 + 4 + 4 

13 = 4 + 4 + 5 

14 = 4 + 5 + 5 

15 = 5 + 5 + 5 

Next, we must show that P (12), . . . , P (n) imply P (n + 1) for all n ≥ 15. Thus, we assume 
that P (12), . . . , P (n) are all true and show how to divide up a class of n + 1 students. We 
first form one group of 4 students. Then we can divide the remaining n− 3 students into 
groups of 4 or 5 by the assumption P (n − 3). (Note that n ≥ 15 and so n − 3 ≥ 12; thus, 
P (n − 3) is among our assumptions P (12), . . . , P (n).) This proves P (n + 1), and so the 
claim holds by induction. � 

Problem 3. The game of Mininim is defined as follows: Some positive number of sticks 
are placed on the ground. Two players take turns removing one, two, or three sticks. The 
player to remove the last one loses. 

Use strong induction to show that: 

The second player has a winning strategy if the number of sticks, equals 4k + 1 for some k ∈ N; 
otherwise, the first player has a winning strategy. 

Solution. The induction hypothesis, P (n), is: 

If n = 4k + 1, for some k ∈ N, then the second player has a winning strategy; 
otherwise, the first player has a winning strategy. 

We proceed by strong induction, starting from 1. 

Base case: n = 1. The first player has no choice but to remove 1 stick and lose, which is

what the theorem says for this case.


Strong inductive step: Suppose the theorem is true for numbers 1 through n and show

that it is true for n + 1. For the inductive step, there are four cases: 

• n + 1 = 4k + 1: show that the first player loses. We’ve already handled the base case 
(1) so we can assume n + 1 ≥ 5. Consider what the first player might do to win: he 
can choose to remove 1, 2 or 3 sticks. If he removes one stick, the remaining number 
of sticks is n = 4k. By strong induction, the player who plays at this point has a 
winning strategy. So the player who played first will lose. 

Similarly, if the first player removes two sticks, the remaining number is 4(k− 1)+3. 
Again, he loses, by the same reasoning. Similarly, by removing 3 sticks, he loses. So, 
however the first player moves, he loses. 
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• n + 1 = 4k: show that the first player can win. 

Have the first player remove 3 sticks: the second player then sees 4(k− 1)+1 sticks, 
and loses, by the strong inductive hypothesis. 

• n + 1 = 4k + 2: show that the first player can win. 

Have the first player remove 1 stick: the second player then sees 4k + 1 sticks, and 
loses as in the previous case. 

• n + 1 = 4k + 3: show that the first player can win. 

Have the first player remove 2 sticks: again, the second player sees 4k +1 sticks and 
loses. 

So in any case, P (n + 1) is true, and by strong induction, we conclude that P (n) holds for 
all n ≥ 1. � 

Problem 4. Consider the following equivalent way of viewing the subset takeaway game 
from the inclass problem on Friday, Week 2: for a fixed, finite set, A, let S initially be all 
the proper subsets of A. Players alternately choose a set B ∈ S and remove B and all 
sets that contain B from S; they then continue playing on the updated S. The player that 
chooses the last set in S wins. 

(a) Use the wellordering property to show that, in any game, one of the players must 
have a winning strategy. Hint: Consider games whose initial set, S, is an arbitrary collec
tion of subsets of, A, not necessarily all the proper subsets of A. Reach a contradiction by 
considering a minimum size game with no winning strategy for either player. What is a 
useful measure of size of a game? 

Solution. Let S be the smallest collection such that neither player has a winning strategy. 
Consider the state after each possible first move by player 1. No such state can correspond 
to a winning position for player 1 since that would mean a winning strategy for player 1 
on S. Nor can every such state be a winning position for player 2 since that would mean 
player 2 has a winning strategy on S. Hence, at least one such state must have no winning 
strategies for both players. But this state is a smaller collection than S, contradiction. 
Thus, by the W.O.P, some player must have a winning strategy for any collection S, and 
for the proper subsets of A in particular. � 

(b) If the whole set A is a possible move in a game, explain why the 1st player must have 
a winning strategy. 
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Solution. We reason by cases to show that player 1 has a winning strategy. Suppose game 
G includes A as a possible move. Let G� be the same game as G except that A is removed 
from the set of possible moves. 

Case 1: Player 1 has a winning strategy in the game G�. Then the first move of Player 1’s 
winning strategy will also be a legal move in game G. Moreover, after this move in game 
G, the set A will no longer be a possible move, so the move will lead to the same winning 
situation for Player 1 as in game G�. So Player 1 has a winning strategy in this case. 

Case 2: Player 2 has a winning strategy in game G�. Then player 1 should choose A as his 
first move in game G. This puts him in the position of the Player 2 in game G�, and so 
Player 1 will have a winning strategy in this case as well. 

So in any case, we conclude that Player 1 has a winning strategy —even though we don’t 
have a clue what it is. � 
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