
� 

Massachusetts Institute of Technology 
6.042J/18.062J, Fall ’05: Mathematics for Computer Science October 3 
Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised October 8, 2005, 979 minutes 

Solutions to Problem Set 3


Problem 1. (a) List all the different binary relations on the set {0, 1}. 

Solution. There are altogether 16 binary relations. 

1. ∅
2. {(0, 0)}
3. {(0, 1)}
4. {(1, 0)}
5. {(1, 1)}
6. {(0, 0), (0, 1)}
7. {(0, 0), (1, 0)}
8. {(0, 0), (1, 1)}
9. {(0, 1), (1, 0)}
10. {(0, 1), (1, 1)}
11. {(1, 0), (1, 1)}
12. {(0, 0), (0, 1), (1, 0)}
13. {(0, 0), (0, 1), (1, 1)}
14. {(0, 0), (1, 0), (1, 1)}
15. {(0, 1), (1, 0), (1, 1)}
16. {(0, 0), (0, 1), (1, 0), (1, 1)} 

(b) Over the domain {0, 1}, which of these relations are weak partial orders? strict partial 
orders? equivalence relations? 

Solution. We first list the relations that satisfy each of the following properties: 

• reflexive: 8, 13, 14, 16 

• symmetric: 1, 2, 5, 8, 9, 12, 15, 16 

• antisymmetric: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14 

• transitive: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16 

Copyright © 2005, Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld. 



2 Solutions to Problem Set 3 

From this we can see that the weak partial orders are {8, 13, 14}, the strict partial orders 
are {1, 3, 4}, and the equivalence relations are {8, 16}. � 

Problem 2. We partially order the power set, P({1, 2, . . . , n}), by the subset relation, ⊆. 

(a) Describe a maximum length chain in P({1, 2, . . . , n}). Briefly explain why there can’t 
be a longer chain than the one you described. 

Solution. The length n + 1 chain 

∅, {1} , {1, 2} , {1, 2, 3} , . . . , {1, 2, . . . , n} 

is a maximum length chain. There can’t be a longer one: any longer chain would have to 
contain two subsets of the same size (think about why!), and no finite set is contained in 
any other set of the same size. � 

(b) Describe a topological sort of P({1, 2, . . . , n}), with a brief justification that your sort 
is correct. 

Solution. All sets of size 0, followed by all sets of size 1 (in any order), followed by all sets 
of size 2 (again, in any order), . . ., followed by all sets of size n. See Figure 1 for the case 
of n = 3. ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} is a topological sort of this relation. 

Note that not all chains and antichains are labelled. A chain is any group that is connected 
in some manner with arrows. Antichains are groups of elements where no two members 
are connected. � 

(c) Use Dilworth’s Lemma to show that there must be an antichain of size ≥ 2n/(n + 1). 
Describe the biggest antichain that you can find. 

Solution. Since a maximum length chain is of size at most n + 1, and the powerset has 
2n elements, Dilworth’s Lemma tells us that there must be an antichain of size at least 
2n/(n + 1). 

A maximum length antichain is the set of all subsets containing exactly �n/2� elements; 
the only other one is the set of all subsets containing exactly �n/2� elements (of course 
these are the same if n is even). A proof of this is actually tricky. The size of this antichain 
is about 2n/

√
2πn. We can’t present proofs of either of these facts yet, because they depend 

on concepts that won’t be introduced for another month. � 



3 Solutions to Problem Set 3


{}
�Q

Q�
Q� Q� Q� Q� Q

� Q
�� QQ= s? 

antichain{1} {2} {3}
Q �Q �

Q � Q �
Q

Q �
� Q

Q �
� 

Q� Q� 
� Q � Q

� Q � Q
�?��+ s � Q

Q ?QQ + s 
{1,2} {2,3} antichain{1,3} 

���
�

HHH
HHH

HH

��
�j ?��� 

{1,2,3} 

chain 

Figure 1: DAG for Problem 4(c) with n = 3. 

Problem 3. Consider the natural numbers partially ordered by divisibility. 

(a) Prove that this partial order has an infinite chain. 

Solution. 1 2 4 8 16 . . . is a chain with infinite length.	 � 

(b) Prove that this partial order has an infinite antichain. 

Solution. The set of prime numbers is infinite. Since no prime divides another, any two 
primes are incomparable. So the set of prime numbers is an antichain. � 

(c)	 Now restrict the domain to the natural numbers ≤ n. Consider the chain 1 �R 2 �R 

R . . . �R 2
�log2 n�. Prove that it is maximal.4 �

Solution. Suppose there is a longer chain a0 �R a1 �R a2 �R . . . �R am. Since this chain 
is longer, m ≥ �log2 n� + 1. For i ∈ {1, 2, 3, . . . ,m}, let ai = piai−1, where pi is an integer 
greater than 1. Then am = p1p2 . . . pma0. Since each pi ≥ 2 and a0 ≥ 1, we have 



4 Solutions to Problem Set 3


am =	 p1p2 . . . pma0 

2m a0≥ 

2m≥ 

≥ 2�log2 n�+1 

> 2log2 n 

= n, 

which is a contradiction since am ≤ n as am ∈ A.	 � 

(d) Let c be the length of the power of 2 chain. By Dilworth’s Lemma there is an antichain 
of length n/c. Describe one. 

n n	 nSolution. The set {� 
2 
� + 1, � 

2
� + 2, . . . , n} is an antichain with size � 

2
�, which is no less 

than the lower bound. � 

Problem 4. We consider DAG’s where each vertex represents a task to be completed. If 
there is a path from one vertex, v, to another vertex, w, then the v task must be completed 
before the w task. Assuming all tasks take unit time to complete, we showed in the Notes 
that the minimum time schedule to complete all the tasks is the size (number of vertices), 
t, of the longest path (chain) in the DAG. 

Formally, a schedule for a DAG is a partition of the vertices. Each block of the partition 
is supposed to correspond to a set of tasks that are to be performed simultaneously. The 
number of processors required by a schedule is the maximum number of tasks that are sched
uled to be performed simultaneously. 

(a) Describe purely in terms of graph, partition, and partial order properties (no informal 
descriptions in terms of “jobs,” “parallel processing,” etc.): 

•	 exactly the properties a vertex partition of a DAG must satisfy in order to represent 
a possible schedule for the vertex tasks, 

•	 the total time required to complete a schedule, 

•	 the number of processors required by a schedule. 



� 

� 

5 Solutions to Problem Set 3 

Solution. • A schedule for a DAG, G, is a partition of the edges of G into a sequence 
of blocks, B1, B2, . . . , Bk such that if a ∈ Bi, b ∈ Bj , and a < b (that is, there is a path 
of positive length from vertex a to vertex b), then i < j. Another way to say this is 
that the blocks are antichains, and the sequence consisting of the elements in B1 in 
any order, followed by the elements of B2 in any order, through the elements of Bk, 
is a topological sort of the partial order defined by G. 

• The total time required to complete a schedule is the number, k, of blocks it has. 
• The number of processors required by a schedule is the size of the largest block. 

(b) Give a small example of a DAG with more than one minimum time schedule. 

Solution. V = {1, 2, 3} , E = {1−→ 2}. There are two minimum time schedules: {{1, 3} {2}}
and {{1} {2, 3}}. 

(c) Explain why any schedule that requires only p processors to complete n tasks must 
take time at least �n/p�. 
Solution. If there are k < �n/p�, then the integer k is less than n/p. So if there are k blocks 
and each block has at most p vertices, the total number of vertices is ≤ kp < (n/p) = n,· p
a contradiction. � 

(d) Let Dn,t be the DAG with n vertices that consists of a directed path of t − 1 vertices 
ending with edges from the final, (t − 1)st, vertex on the path directly to each of the 
remaining n− (t− 1) vertices, as in the following figure: 

. . .

. .
 . t - 1

n - (t - 1)

What is the minimum time schedule for Dn,t? Explain why it is unique. How many 
processors does it require? 



� � 

� 

6 Solutions to Problem Set 3 

Solution. There’s no choice but to schedule each of the t − 1 vertices on the path one at a 
time in order. A minimum time schedule then does all the remaining n − (t − 1) vertices 
at the tth time interval. The number of processors required is therefore n − t+1. The time 
is t, the number of vertices on the longest chain in the graph. � 

(e) Describe a minimum time pprocessor schedule for Dn,t. Write a simple formula for 
this minimum time, M(n, t, p). 

Solution. As in part (??), there’s no choice but to schedule each of the t − 1 vertices on 
the path one at a time in order. A minimum time schedule then does all the remaining 
n − (t − 1) vertices p at a time, for a total time of 

M(n, t, p) ::= (t − 1) + 
n − (t − 1) 

. (1) 
p 

(f) Show that every DAG with n vertices and maximum chain size, t, has a pprocessor 
schedule that runs in time M(n, t, p). 

Hint: Induction – you decide on what variable. You may find it helpful to use the fact that 
if a ≥ b ≥ 0, then 

a − b� ≤ 1 + � (2)� a� − �b� 

for all real numbers a, b. 

Solution. Proof. Induction on t. Induction hypothesis: 

P (t) ::= ∀ DAGs G, ∀n, p ∈ N+, if G has n vertices and maximum chain size t, 
then there is a pprocessor schedule for G that takes time M(n, t, p). 

Base case t = 1: In this case there are n vertices and no edges between them. So any 
partition of the vertices into �n/p� blocks of size at most p will be a pprocessor schedule 
taking time �n/p� = 0 + �(n − 0)/p� = M(n, 1, p). 

Inductive step: Assume P (t) and conclude P (t + 1) where t ≥ 1. 

Let G be any DAG with n vertices and maximum chain size t + 1. Suppose k vertices 
are endpoints of maximumsize chains in G. Note that no edge can leave any of these 
endpoint vertices, for otherwise there would be a chain of length one more than the max
imum chain size. Let H be the subgraph of G obtained by removing these k vertices. 

Now H is a DAG with n − k vertices and maximum chain size t, so by Induction Hypoth
esis, there is a pprocessor schedule for H taking time M(n − k, t, p). 



� � 

� � � � 

� � � � 

� � � � 

� � 

� 

7 Solutions to Problem Set 3 

This pprocessor schedule for H can be extended to one for G by adding �k/p� disjoint 
blocks of the endpoints, all of size ≤ p. So the time for this schedule for G is 

k 
M(n − k, t, p) + 

p 

= (t − 1) + 
n − k − (t − 1) k 

+ (def of M ) 
p p 

k 
= (t − 1) + 

n − t k − 1
+ (3) 

p 
− 

p p 

We complete the proof by showing that the expression (??) is ≤ M(n, t + 1, p). To do this, 
we consider two cases: 

• Case 1 (k − 1 is not a multiple of p): We have 

kk − 1
= , (4) 

p p 

so � � � � �� � � 
k

(??) ≤ (t − 1) + 1 + 
n − t k − 1

+ (by (??)) 
p 

− 
p p� � � � �� � � 

k k 
= (t − 1) + 1 + 

n − t 
+ (by (??)) 

p 
− 

p p 

n − t 
= t + 

p 

= M(n, t + 1, p). (def of M ) 

• Case 2 (k − 1 is a multiple of p): Now we have � � 
k 

p 
= 1 + 

k − 1 

p 
, (5) 

so �� � � � � 

(??) = (t − 1) + � 

n − t 
p � 

− 
k − 1 

p 
+ � 

k 

p � 
(since (k − 1)/p ∈ Z) 

= (t − 1) + � 

n − t 
p� 

− 
k − 1 

p 
+ 1 + 

k − 1 

p 
(by (??)) 

= t + 
n − t 

p 

= M(n, t + 1, p). (def of M ) 


	Problem 1
	(a)
	(b)

	Problem 2
	(a)
	(b)
	(c)

	Problem 3
	(a)
	(b)
	(c)
	(d)

	Problem 4
	(a)


