6.045 Pset 1

Assigned: Thursday, February 3, 2011
Due: Wednesday, February 16, 2011
To facilitate grading, remember to solve each problem on a separate sheet of
paper!

1. Recall the protocol by which Alice commits herself to a bit $x \in\{0,1\}$ without revealing x to Bob. Namely, Alice first chooses two large random prime numbers P and Q, one of which ends in a ' 7 ' if and only if $x=1$. She then computes their product $N=P Q$ and sends N to Bob, but keeps the factors P and Q to herself. To reveal the value of x later, Alice sends P and Q to Bob, whereupon Bob checks that (i) P and Q encode the claimed value of x, (ii) P and Q are indeed prime numbers, and (iii) $P Q=N$. Suppose Bob forgets to check that P and Q are prime. Does the protocol still work correctly, and if not, what can go wrong?
2. Recall Euclid's algorithm for computing $\operatorname{GCD}(A, B)$ for positive integers $A \geq B$, which is given by the following recursive pseudocode:
```
if B divides }A\mathrm{ then return }
else return GCD (B,A\operatorname{mod}B)
```

Show that, if initialized on n-bit integers $A \geq B$, Euclid's algorithm halts after at most $2 n$ iterations. [Hint: Let $A_{t} \geq B_{t}$ be the arguments to the GCD function at the $t^{t h}$ iteration, so that $A_{1}=A$ and $B_{1}=B$. What can you say about the decrease of A_{t}, as a function of t ?]
3. Show that any language L containing only finitely many strings is regular.
4. Show that, if L_{1} and L_{2} are any two regular languages, then $L_{1} \cap L_{2}$ is also a regular language.
5. Let $L=\left\{x \in\{a, b\}^{*}: x\right.$ does not contain two consecutive b 's $\}$. Write a regular expression for L.
6. Let $L \subseteq\{a, b\}^{*}$ be the language consisting of all palindromes: that is, strings like $a b b a$ that are the same backwards and forwards. Using the pigeonhole principle, show that L is not regular.

7. Concatenation of regular languages

(a) Let $L \subseteq\{a, b, c\}^{*}$ be the language consisting of all strings w that can be expressed as $w_{1} \circ w_{2}$, where w_{1} contains an even number of b 's, w_{2} contains a number of c 's that is divisible by 3 , and \circ denotes string concatenation. Show that L is regular, by constructing an NDFA that recognizes L.
(b) Let $L \subseteq\{a, b\}^{*}$ be the language consisting of all strings w that can be expressed as $w_{1} \circ w_{2}$, where w_{1} contains an even number of b 's and w_{2} contains a number of b 's that is divisible by 3 . Construct a DFA that recognizes L. [Hint: You could do this by first constructing an NDFA and then using the simulation of NDFA's by DFA's, but that's working way too hard!]
(c) Generalize part a. to show that, if L_{1} and L_{2} are any two regular languages, then

$$
L=\left\{w_{1} \circ w_{2} \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\}
$$

is also a regular language.

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity

 Spring 2011For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

