6.045 Pset 2

Assigned: Friday, February 11, 2011
Due: Thursday, February 24, 2011
To facilitate grading, remember to solve each problem on a separate sheet of paper!

1. Show that the following languages are context-free.
(a) $L=\left\{a^{n} b^{2 n}: n \geq 0\right\}$
(b) The language $L \subset\{(,)\}^{*}$ that consists of all strings of balanced parentheses: for example, $(()())()(())$ is in L, but ()$)(()$ is not in L.
(c) $L=\left\{x \in\{a, b\}^{*} \mid x\right.$ contains an equal number of a 's and b 's $\}$
(d) $L=\left\{x \in\{a, b\}^{*} \mid x\right.$ contains more a 's than b 's $\}$
(e) [Extra credit] $L=\left\{x \# y \mid x, y \in\{a, b\}^{*}\right.$ and $\left.x \neq y\right\}$
2. Show that context-free languages are closed under union: that is, if A and B are both CFLs, then $A \cup B$ is a CFL also.
3. Show that every regular language is also a CFL. [Hint: Explain how to convert any regular expression into a CFG that generates the same language.]
4. Let $L_{1}=\left\{a^{n} b^{n} c^{m} \mid n, m \geq 0\right\}$ and $L_{2}=\left\{a^{n} b^{m} c^{m} \mid n, m \geq 0\right\}$.
(a) Show that L_{1} and L_{2} are both CFLs. [Note: You only need to give a CFG generating L_{1}; for L_{2} you can appeal to the symmetry with L_{1}.]
(b) Recall from pset1 that regular languages are closed under intersection: that is, if A and B are both regular, then so is $A \cap B$. Using problem 4a together with a result from class, show that CFLs are not similarly closed under intersection.
(c) Show that CFLs are not closed under complement: that is, even if L is a CFL, the complementary language $\bar{L}=\{x \mid x \notin L\}$ need not be a CFL. [Hints: problem 2, L_{1} and L_{2}, De Morgan's Law.]
5. Let L be language consisting of $1,101,101001,1010010001$, etc. Show that L is not context-free.
6. Let $L=\left\{1^{n} \mid n\right.$ is prime $\}$.
(a) Show that L is not regular. (You can use the fact that there are infinitely many prime numbers.)
(b) Show that the regular languages are closed under complement. Conclude that $\bar{L}=\left\{1^{n} \mid n\right.$ is composite $\}$ is not regular either.
(c) Show that L is not context-free.
(d) [Extra credit] Show that $\bar{L}=\left\{1^{n} \mid n\right.$ is composite $\}$ is not context-free. (You can use Dirichlet's Theorem, which says that if $\operatorname{GCD}(n, k)=1$, then the sequence $n, n+k, n+2 k \ldots$ contains infinitely many primes.)
7. Let $L=\left\{\# x \# \mid x \in\{0,1\}^{*}\right.$ is a palindrome $\}$. Design a Turing machine, over the alphabet $\{0,1, \#\}$, that recognizes L. Give the complete state transition diagram.
8. Let $L=\left\{\# x \# \mid x \in\{0,1\}^{*}\right.$ contains an equal number of 0 's and 1 's $\}$. Verbally describe a Turing machine, over the alphabet $\{0,1, \#\}$, that recognizes L. (Note: You can't just write "count the number of 0's and 1's" - explain how the counting is done!)

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity

 Spring 2011For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

