6.045 Pset 5: NP-Completeness and More

Assigned: Wednesday, April 6, 2011

Due: Thursday, April 14, 2011

To facilitate grading, remember to solve each problem on a separate sheet of paper! Also remember to write your name on each sheet.

1. Let EXACT4SAT be the following problem:

- Given a Boolean formula φ, consisting of an AND of clauses involving exactly 4 distinct literals each (such as ($\left.\left.x_{2} \vee\right\urcorner x_{3} \vee\right\urcorner x_{5} \vee x_{6}$)), decide whether φ is satisfiable.
Show that EXACT4SAT is NP-complete. You can use the fact, which we proved in class, that $3 S A T$ is NP-complete.

2. Let DOU BLESAT be the following problem:

- Given as input a Boolean circuit C, decide whether there are two or more input assignments $x \in\{0,1\}^{n}$ such that $C(x)=1$.

Show that DOU BLESAT is NP-complete.
3. Let G be an undirected graph with n vertices. Then a Hamilton path is a simple path in G that visits each vertex once (i.e., has n vertices and $n-1$ edges), while a Hamilton cycle is a simple cycle in G that visits each vertex once (i.e., has n vertices and n edges). Let HAMPATH and HAMCYCLE be the problems of deciding whether G has a Hamilton path and Hamilton cycle respectively, given G as input.
(a) Show that if G has a Hamilton cycle, then G also has a Hamilton path.
(b) Give an example of a graph G that has a Hamilton path but no Hamilton cycle.
(c) Give a polynomial-time reduction from $H A M C Y C L E$ to $H A M P A T H$.
(d) Give a polynomial-time reduction from HAMPATH to HAMCYCLE.
(Together, parts c and d imply that HAMPATH and HAMCYCLE are polynomial-time equivalent. Since HAMCYCLE is a famous NP-complete problem, this immediately implies that HAMPATH is NP-complete as well.)
4. In the quadratic programming ($Q U A D P R O G$) problem, the input is a system of equalities and inequalities, each involving polynomials of degree at most 2 (with integer coefficients) in n real variables x_{1}, \ldots, x_{n}. The problem is to decide whether there exists an assignment to x_{1}, \ldots, x_{n} that satisfies all the constraints simultaneously. As an example, the system

$$
\begin{aligned}
x_{1}+x_{2} & \leq 1 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0 \\
4 x_{1} x_{2} & \geq 1
\end{aligned}
$$

can be satisfied by setting $x_{1}=x_{2}=1 / 2$, but if we replaced the last inequality by $x_{1} x_{2} \geq 1$, then the system would be unsatisfiable.
(a) Show that $Q U A D P R O G$ is NP-hard, by reduction from any problem that was already proved NP-hard in class. [Hint: $3 C O L O R I N G$ would be a good choice.]
(b) What is a difficulty in showing that $Q U A D P R O G \in \mathrm{NP}$ (the other condition needed for $Q U A D P R O G$ to be NP-complete)?
5. Suppose problem X is proved NP-complete, by a polynomial-time reduction that maps size- n instances of $S A T$ to size- n^{3} instances of problem X. And suppose that someday, some genius manages to prove that $S A T$ requires $\Omega\left(c^{n}\right)$ time, for some constant $c>1$. Then what can you conclude about the time complexity of problem X ?
6. Recall that EXP $=\cup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)$, and that NEXP $=\cup_{k} \operatorname{NTIME}\left(2^{n^{k}}\right)$. Just as it is a famous open problem whether $P=N P$, it is also an open problem whether EXP $=$ NEXP. However, show that these problems are related in the following way: if $P=N P$, then EXP $=$ NEXP as well. [Hint: Given a language $L \in \mathrm{NEXP}$, can you come up with a different language $L^{\prime} \in \mathrm{NP}$, such that deciding L in exponential time is equivalent to deciding L^{\prime} in polynomial time? The trick of "padding" an input string with a bunch of trailing 1's will likely be helpful here.]
7. As we've discussed in class, provable separations of complexity classes are few and far between. In this problem, however, you'll prove a bizarre separation that happens to be known: P does not equal the class of languages decidable in linear space.
(a) Show that, if $\operatorname{SPACE}(n) \subseteq \mathrm{P}$, then $\operatorname{SPACE}\left(n^{2}\right) \subseteq \mathrm{P}$ also. [Hint: Use the "padding" trick, just like you did for problem 6.]
(b) Using part a, show that if $\mathrm{P}=\operatorname{SPACE}(n)$, then $\operatorname{SPACE}(n)=\operatorname{SPACE}\left(n^{2}\right)$. Conclude that $\mathrm{P} \neq \operatorname{SPACE}(n)$. [You can assume the Space Hierarchy Theorem.]
(c) From parts a and b, can you conclude that there exist languages decidable in polynomial time but not in linear space? Can you conclude that there exist languages decidable in linear space but not in polynomial time?

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity

 Spring 2011For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

