6.045 Pset 6: Randomness and Cryptography

Assigned: Thursday, April 21, 2011

Due: Monday, May 2, 2011

To facilitate grading, remember to solve each problem on a separate sheet of paper! Also remember to write your name on each sheet.

1. Prove the law of linearity of expectation: $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$ for random variables X and Y. (You can assume, for simplicity, that X and Y are nonnegative-integer valued.)
2. Prove Markov's inequality: for all random variables $X \geq 0$ and all k,

$$
\operatorname{Pr}[X>k \mathrm{E}[X]]<\frac{1}{k} .
$$

3. Recall that ZPP (Zero-Error Probabilistic Polynomial-Time) is the class of languages L for which there exists a randomized algorithm that (i) for every input $x \in\{0,1\}^{n}$, halts after an expected number of steps polynomial in n, and (ii) when it does halt, always decides correctly whether $x \in L$. Show that ZPP $=\mathrm{RP} \cap$ coRP. [Hint: You may want to use Markov's inequality.]
4. In this problem, you'll study the consequences if NP-complete problems were solvable by probabilistic (BPP) algorithms.
(a) Show that if NP \subseteq BPP, then given a satisfiable $S A T$ instance $\varphi\left(x_{1}, \ldots, x_{n}\right)$, you can actually find a satisfying assignment for φ in probabilistic polynomial time with high probability. [Hint: This is similar to the problem on a previous pset that asked you to prove the equivalence of search and decision - except that both the assumption and the conclusion now involve probabilistic algorithms. Generalizing your earlier solution to the probabilistic case may require amplification and the union bound.]
(b) Using part a, show that if $N P \subseteq B P P$, then $N P=R P$.
5. In class, we discussed the following communication protocol, call it \mathcal{C}, for deciding whether two integers $x \in\left\{0, \ldots, 2^{n}-1\right\}$ and $y \in\left\{0, \ldots, 2^{n}-1\right\}$, held by Alice and Bob respectively, are equal. First, Alice chooses a random prime number p between 1 and n^{10}. Next, Alice sends p and $x \bmod p$ to Bob. Finally, Bob checks whether $x \bmod p=y \bmod p$, reports that $x \neq y$ if not, and guesses that $x=y$ if so.
(a) Approximately how many bits does Alice need to send Bob in this protocol? What sort of improvement is that (polynomial, exponential, etc.) over the "naïve protocol" of sending x in its entirety?
(b) Show that the number $|x-y|$ has at most $n+1$ distinct prime factors.
(c) Let $\pi(n)$ be the number of prime numbers less than n. The Prime Number Theorem, one of the greatest results of number theory, says that $\pi(n)$ asymptotically approaches $n / \ln n$:

$$
\lim _{n \rightarrow \infty} \frac{\pi(n)}{n / \ln n}=1 .
$$

Using the Prime Number Theorem together with part a, show that if $x \neq y$, then $\operatorname{Pr}_{p}[x=y(\bmod p)]=$ $o(1)$. Conclude that the protocol \mathcal{C} succeeds with high probability.
(d) [Extra credit] Show that \mathcal{C} is optimal, in the sense that no other protocol for equality-testing uses asymptotically fewer bits. [Hint: Can you simulate the randomized protocol \mathcal{C} by a deterministic protocol that uses exponentially more bits? If so, what can you conclude from that?]
6. Show that there is no one-way function where every bit of the output depends on only two bits of the input. [Hint: Use the fact that $2 S A T$ is in P.]
7. Let a puzzle generator be a polynomial-time algorithm that maps a random string r to a pair $\left(\varphi_{r}, x_{r}\right)$, where φ_{r} is a 3SAT instance and x_{r} is a satisfying assignment for φ_{r}, such that for all polynomial-time algorithms A,

$$
\underset{r}{\operatorname{Pr}}\left[A \text { finds a satisfying assignment for } \varphi_{r}\right]
$$

is negligible (less than $\frac{1}{\operatorname{poly}(n)}$). Show that puzzle generators exist if and only if one-way functions exist.
8. The following questions concern the RSA cryptosystem.
(a) Recall that, having chosen primes p and q such that $p-1$ and $q-1$ are not divisible by 3 , a key step in RSA is to find an integer k such that $3 k \equiv 1 \bmod (p-1)(q-1)$. Give a simple procedure to find such a k given p and q.
(b) Given a product of two primes, $N=p q$, show that if an eavesdropper can efficiently determine $(p-1)(q-1)$ (the order of the multiplicative group $\bmod N$), then she can also efficiently determine p and q themselves.

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity

 Spring 2011For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

