
Lecture 8

Randomized Algorithms I
Supplemental reading in CLRS: Chapter 5; Section 9.2

Should we be allowed to write an algorithm whose behavior depends on the outcome of a coin flip?
It turns out that allowing random choices can yield a tremendous improvement in algorithm perfor-
mance. For example,

• One can find a minimum spanning tree of a graph G = (V ,E,w) in linear time Θ(V +E) using a
randomized algorithm.

• Given two polynomials p, q of degree n−1 and a polynomial r of degree n−2, one can check
whether r = pq in linear time Θ(n) using a randomized algorithm.

No known deterministic algorithms can match these running times.
Randomized algorithms are generally useful when there are many possible choices, “most” of

which are good. Surprisingly, even when most choices are good, it is not necessarily easy to find a
good choice deterministically.

8.1 Randomized Median Finding

Let’s now see how randomization can improve our median-finding algorithm from Lecture 1. Recall
that the main challenge in devising the deterministic median-finding algorithm was this:

Problem 8.1. Given an unsorted array A = A[1, . . . ,n] of n numbers, find an element whose rank is
sufficiently close to n/2.

While the deterministic solution of Blum, Floyd, Pratt, Rivest and Tarjan is ingenious, a simple
randomized algorithm will typically outperform it in practice.

Input: An array A = A[1, . . . ,n] of n numbers

Output: An element x ∈ A such that 1
10 n ≤ rank(x)≤ 9

10 n.

Algorithm: FIND-APPROXIMATE-MIDDLE(A)
Pick an element from A uniformly at random.

Note that the above algorithm is not correct. (Why not?) However, it does return a correct answer
with probability 8

10 .

A:

good

Figure 8.1. Wouldn’t it be nice if we had some way of choosing an element that probably lies in the middle?

8.1.1 Randomized Median Finding

Let’s put the elegant and simple algorithm FIND-APPROXIMATE-MIDDLE to use in a randomized
version of the median-finding algorithm from Lecture 1:

Algorithm: RANDOMIZED-SELECT(A, i)

1. Pick an element x ∈ A uniformly at random.

2. Partition around x. Let k = rank(x).

3. • If i = k, then return x.

• If i < k, then recursively call RANDOMIZED-SELECT(A[1, . . . ,k−1], i).

• If i > k, then recursively call RANDOMIZED-SELECT(A[k+1, . . . , i], i−k).

Note two things about this algorithm:

• Unlike FIND-APPROXIMATE-MIDDLE, RANDOMIZED-SELECT makes several random choices:
one in each recursive call.

• Unlike FIND-APPROXIMATE-MIDDLE, RANDOMIZED-SELECT is correct. The effect of bad ran-
dom choices is to prolong the running time, not to generate an incorrect answer. For example, if
we wanted to find the middle element (i = n/2), and if our random element x happened to always
be the smallest element of A, then RANDOMIZED-SELECT would take Θ(n) ·Tpartition = Θ(n2)
time. (To prove this rigorously, a more detailed calculation is needed.)

The latter point brings to light the fact that, for randomized algorithms, the notion of “worst-case”
running time is more subtle than it is for deterministic algorithms. We cannot expect randomized
algorithms to work well for every possible input and every possible sequence of random choices (in
that case, why even use randomization?). Instead, we do one of two things:

• Construct algorithms that always run quickly, and return the correct answer with high prob-
ability. These are called Monte Carlo algorithms. With some small probability, they may
return an incorrect answer or give up on computing the answer.

• Construct algorithms that always return the correct answer, and have low expected running
time. These are called Las Vegas algorithms. Note that the expected running time is an
average over all possible sequences of random choices, but not over all possible inputs. An
algorithm that runs in expected Θ(n2) time on difficult inputs and expected Θ(n) time on easy
inputs has worst-case expected running time Θ(n2), even if most inputs are easy.

FIND-APPROXIMATE-MIDDLE is a Monte Carlo algorithm, and RANDOMIZED-SELECT is a Las Vegas
algorithm.

Lec 8 – pg. 2 of 5

8.1.2 Running Time

To begin our analysis of RANDOMIZED-SELECT, let’s first suppose all the random choices happen
to be good. For example, suppose that every recursive call of RANDOMIZED-SELECT(A, i) returns
an element whose rank is between 1

10 |A| and 9
10 |A|. Then, the argument to each recursive call of

RANDOMIZED-SELECT is at most nine-tenths the size of the argument to the previous call. Hence, if
there are a total of K recursive calls to RANDOMIZED-SELECT, and if n is the size of the argument
to the original call, then (9

10
)K n ≥ 1 =⇒ K ≤ log10/9 n.

(Why?) Of course, in general we won’t always get this lucky; things might go a little worse. However,
it is quite unlikely that things will go much worse. For example, there is a 96% chance that (at least)
one of our first 15 choices will be bad—quite high. But there is only a 13% chance that three of our
first 15 choices will be bad, and only a 0.06% chance that nine of our first 15 choices will be bad.

Now let’s begin the comprehensive analysis. Suppose the size of the original input is n. Then,
let Tr be the number of recursive calls that occur after the size of A has dropped below

(9
10

)r n, but

before it has dropped below
(9

10
)r+1 n. For example, if it takes five recursive calls to shrink A down

to size 9
10 n and it takes eight recursive calls to shrink A down to size

(9
10

)2 n, then T0 = 5 and T1 = 3.
Of course, each Ti is a random variable, so we can’t say anything for sure about what values it will
take. However, we do know that the total running time of RANDOMIZED-SELECT(A = A[1, . . . ,n], i) is

T =
log10/9 n∑

r=0
Θ

((9
10

)r n
)
·Tr.

Again, T is a random variable, just as each Tr is. Moreover, each Tr has low expected value: Since
each recursive call to RANDOMIZED-SELECT has a 4/5 chance of reducing the size of A by a factor of
9
10 , it follows that (for any r)

Pr
[
Tr > s

]≤ (1
5
)s .

Thus, the expected value of Tr satisfies

E [Tr]≤
∞∑

s=0
s
(1

5
)s = 5

16
.

(The actual value 5/16 is not important; just make sure you are able to see that the series converges
quickly.) Thus, by the linearity of expectation,

E [T]= E
[

log10/9 n∑
r=0

Θ
((9

10
)r n

)
·Tr

]

=
log10/9 n∑

r=0
Θ

((9
10

)r n
)
·E [Tr]

≤ 5
16

log10/9 n∑
r=0

O
((9

10
)r n

)

=O

(
n

log10/9 n∑
r=0

(9
10

)r
)

Lec 8 – pg. 3 of 5

≤O

(
n

∞∑
r=0

(9
10

)r
)

=O(n),

since the geometric sum
∑∞

r=0
(9

10
)r converges (to 10).

8.2 Another Example: Verifying Polynomial Multiplication

Suppose we are given two polynomials p, q of degree n−1 and a polynomial r of degree 2n−2, and we
wish to check whether r = pq. We could of course compute pq in Θ(n lgn) time using the fast Fourier
transform, but for some purposes the following Monte Carlo algorithm would be more practical:

Algorithm: VERIFY-MULTIPLICATION(p, q, r)

1. Choose x uniformly at random from {0,1, . . . ,100n−1}.

2. Return whether p(x) · q(x)= r(x).

This algorithm is not correct. It will never report no if the answer is yes, but it might report yes when
the answer is no. This would happen if x were a root of the polynomial pq− r, which has degree at
most 2n−2. Since pq− r can only have at most 2n−2 roots, it follows that

Pr
[
wrong answer

]≤ 2n−2
100n

< 0.02.

Often, the performance improvement offered by this randomized algorithm (which runs in Θ(n) time)
is worth the small risk of (one-sided) error.

8.3 The Markov Bound

The Markov bound states that it is unlikely for a nonnegative random variable X to exceed its
expected value by very much.

Theorem 8.2 (Markov bound). Let X be a nonnegative random variable with positive expected value.1

Then, for any constant c > 0, we have

Pr
[
X ≥ c ·E [X]

]
≤ 1

c
.

Proof. We will assume X is a continuous random variable with probability density function fX ; the
discrete case is the same except that the integral is replaced by a sum. Since X is nonnegative, so is
E [X]. Thus we have

E [X]=
∫ ∞

0
x fX (x) dx

≥
∫ ∞

cE[X]
x fX (x) dx

1 i.e., Pr
[
X > 0

]> 0.

Lec 8 – pg. 4 of 5

≥ cE [X]
∫ ∞

cE[X]
fX (x) dx

= cE [X] ·Pr
[
X ≥ cE [X]

]
.

Dividing through by cE [X], we obtain

1
c
≥Pr

[
X ≥ cE [X]

]
.

Corollary 8.3. Given any constant c > 0 and any Las Vegas algorithm with expected running time
T, we can create a Monte Carlo algorithm which always runs in time cT and has probability of error
at most 1/c.

Proof. Run the Las Vegas algorithm for at most cT steps. By the Markov bound, the probability of
not reaching termination is at most 1/c. If termination is not reached, give up.

Lec 8 – pg. 5 of 5

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Randomized Algorithms I
	Randomized Median Finding
	Another Example: Verifying Polynomial Multiplication
	The Markov Bound

