
Lecture 9

Randomized Algorithms II
Supplemental reading in CLRS: Appendix C; Section 7.3

After Lecture 8, several students asked whether it was fair to compare randomized algorithms to
deterministic algorithms.

Determistic algorithm:
• always outputs the right answer
• always runs efficiently

Randomized algorithm:
• may sometimes not output the right answer
• may sometimes not run efficiently

Is this “fair”? Of course not. We demand less from randomized algorithms. But in exchange, we
expect randomized algorithms to do more—to be more efficient, or to be simple and elegant.

Separately, we might ask whether it is useful to employ randomized algorithms. The answer here
is that it depends:

• on the situation
• on the available alternatives
• on the probability of error or inefficiency.

Lots of real-life situations call for randomized algorithms. For example, Google Search and IBM’s
Jeopardy!-playing computer Watson both employ randomized algorithms.

9.1 The Central Limit Theorem and the Chernoff Bound

Ideally, a randomized algorithm will have the property that

Pr
[
bad things happening

] n→∞−−−−→ 0.

Before further analyzing randomized algorithms, it will be useful to establish two basic facts about
probability theory: the central limit theorem and the Chernoff bound. The central limit theorem
states that the mean of a large number of independent copies of a random variable is approximately
normal, as long as the variable has finite variance. The normal distribution (or Gaussian distri-
bution) of mean 0 and variance 1, denoted N(0,1), is defined by the probability density function

fN(0,1)(x)= 1p
2π

exp
(−x2/

2
)
.

Figure 9.1. A tail of the normal distribution.

Taking an affine transform of this standard Gaussian, we obtain the normal distribution with arbi-
trary mean µ and arbitrary variance σ2, denoted N

(
µ,σ2)

. Its probability density function is

fN(µ,σ2)(x)= 1p
2πσ2

exp
(
− (x−µ)2

2σ2

)
.

Due in part to the following theorem, the Gaussian distribution is extremely important in all of
probability theory.

Theorem 9.1 (Central Limit Theorem). Suppose X1, X2, . . . are i.i.d.1 random variables, each with
finite mean µ and finite variance σ2. Let Sn = X1+...+Xn

n , and let Yn =p
n

(
Sn −µ

)
. Then the variables

Y1,Y2, . . . converge to a normal distribution:

Yn
d−→ N

(
0,σ2)

.

The precise meaning of this theorem is somewhat technical. Again, in effect it means that the
average of a large number of independent copies of a random variable X is approximately normally
distributed. Thus, the probability that this average exceeds its expected value by r is approximately
the probability that a normal random variable with variance σ2 exceeds its expected value by r.
While this heuristic reasoning does not rigorously prove any specific bound, there are a number of
bounds that have been worked out for certain common distributions of X . One such bound is the
Chernoff bound, one version of which is as follows:

Theorem 9.2 (Chernoff bound). Let Y ∼ B(n, p) be a random variable representing the total number
of heads in a series of n independent coin flips, where each flip has probability p of coming up heads.
Then, for all r > 0, we have

Pr
[
Y ≥ E [Y]+ r

]
≤ exp

(−2r2/
n
)
.

The distribution in Theorem 9.2 is called the binomial distribution with parameters (n, p).
The probability of m heads is

(n
m

)
pm(1− p)n−m.

There are several different versions of the Chernoff bound—some with better bounds for specific
hypotheses, some more general. Section C.5 of CLRS gives a classic proof of the Chernoff bound,
applying the Markov inequality to the random variable exp

(
α(Y −E [Y])

)
for a suitable constant α.

We give a different proof here2, due to Impagliazzo and Kabanets, 2010.

1independent and identically distributed
2 Of a different theorem, actually. The version we prove here is (stronger than) Exercise C.5-6 of CLRS.

Lec 9 – pg. 2 of 9

0 1 2 3 4 5 6

Figure 9.2. Galton’s board is a toy in which, at each peg, the ball has probability 1
2 of moving left and probability 1

2 of
moving right. The number of the bin into which it falls is a binomial random variable with parameters (n, 1

2). If n is large
and you drop a large number of balls into the board, the collection of balls in the bins underneath will start to look like a
Gaussian probability density curve.

Lec 9 – pg. 3 of 9

Proof of Theorem 9.2. Let
Y = X1 +·· ·+ Xn,

where X1, . . . , Xn are independent {0,1}-valued random variables, each having probability p of being
1. Thus Y is a binomial random variable with parameters (n, p). Let S be a random subset of {1, . . . ,n}
such that each element of {1, . . . ,n} independently has probability q of being included in S, where q
is a parameter that will be determined later. The probability that X i = 1 for all i ∈ S is

Pr

[∧
i∈S

X i = 1

]
=Pr

[∧
i∈S

X i = 1
∣∣∣ Y ≥ E [Y]+ r

]
Pr

[
Y ≥ E [Y]+ r

]
+Pr

[∧
i∈S

∣∣∣ Y < E [Y]+ r

]
Pr

[
Y < E [Y]+ r

]

≥Pr

[∧
i∈S

X i = 1
∣∣∣ Y ≥ E [Y]+ r

]
Pr

[
Y ≥ E [Y]+ r

]
. (9.1)

Meanwhile,

Pr

[∧
i∈S

X i = 1
∣∣∣ Y ≥ E [Y]+ r

]
≥ (1− q)n−(E[Y]+r), (9.2)

since the condition
∧

i∈S X i = 1 is equivalent to the condition that S doesn’t include the indices of any
zeros, and we are conditioning on the hypothesis that there are at most n− (E [Y]+ r) zeros. (This is
the “key idea” of the proof. Notice that we have switched from conditioning on S followed by the X i ’s
to conditioning on the X i ’s followed by S.) Combining (9.1) and (9.2), we obtain

Pr

[∧
i∈S

X i = 1

]
≥ (1− q)n−(E[Y]+r) Pr

[
Y ≥ E [Y]+ r

]
. (9.3)

We could also compute Pr
[∧

i∈S X i = 1
]

by conditioning on S in a different way:

Pr

[∧
i∈S

X i = 1

]
=

n∑
k=0

((n
k
)
qk(1− q)n−k

)
︸ ︷︷ ︸

Pr
[
|S|=k

]
·
(

pk
)

︸ ︷︷ ︸
Pr

[∧
i∈S X i=1

∣∣∣ |S|=k
]

.

Recall the binomial formula, which states

(a+b)n =
n∑

k=0

(n
k
)
akbn−k.

In the present case, we have

Pr

[∧
i∈S

X i = 1

]
= (

qp+1− q
)n . (9.4)

Combining (9.3) and (9.4), we obtain

(1− q)n−(E[Y]+r) Pr
[
Y ≥ E [Y]+ r

]
≤ (

qp+1− q
)n .

Rearranging and using the fact that E [Y]= np, we have equivalently

Pr
[
Y ≥ E [Y]+ r

]
≤

(
qp+1− q

)n

(1− q)n−(np+r) . (9.5)

Lec 9 – pg. 4 of 9

Equation (9.5) holds for arbitrary q, so we might as well assign a value to q for which the right side
is minimal. Let

q = r/n(
p+ r

n
)
(1− p)

;

after some expansion, the right side of (9.5) becomes(
p

p+ r
n

)p+ r
n
(

1− p
1− (

p+ r
n
))1−(p+ r

n)
n

= exp
(−nf

(r
n
))

,

where3

f (x)= (
p+ x

)
ln

(
1+ x

p

)
+ (

1− (p+ x)
)
ln

(
1− x

1−p

)
.

Below we will show that
f (x)≥ 2x2 for all x ∈R such that f (x) ∈R,

so that (9.5) becomes

Pr
[
Y ≥ E [Y]+ r

]
≤ exp

(−nf
(r

n
))

≤ exp
(
−2n

(r
n
)2

)
= exp

(
−2r2

n

)
.

This will complete the proof.
All that remains is to show that f (x)≥ 2x2 for all x such that f (x) ∈R—namely, for −p < x < 1− p,

though we will only need the range 0≤ x < 1−p.4 This can be shown by calculus: the first and second
derivatives of f are

f ′(x)= ln
(
1+ x

p

)
− ln

(
1− x

1−p

)
,

f ′′(x)= 1
(1− (p+ x))(p+ x)

.

In particular, f ′′(x) is minimized when p+ x = 1
2 , at which point f ′′(x) = 4. Thus, the fundamental

theorem of calculus gives

f ′(x) = f ′(0)︸ ︷︷ ︸
0

+
∫ x

t=0
f ′′(t) dt ≥

∫ x

t=0
4 dt = 4x.

Applying the fundamental theorem of calculus again, we have

f (x) = f (0)︸︷︷︸
0

+
∫ x

t=0
f ′(t) dt ≥

∫ x

t=0
4t dt = 2x2.

3 The definition of f may seem unmotivated here, but in fact f (x) is properly interpreted as the relative entropy between
two Bernoulli random variables with parameters p and p+ x, respectively. Relative entropy is a measure of the “distance”
between two probability distributions.

4 Note that x = r
n will always fall within this range, as we must have E [Y]+ r ≤ n. (Or at least, the theorem becomes

trivial when r
n > 1− p.)

Lec 9 – pg. 5 of 9

ai

pivot

Figure 9.3. In a given iteration of QUICKSORT, there will be several working subarrays, each in the process of being
sorted by its own recursive call to QUICKSORT.

9.2 Analysis of QUICKSORT

Recall the procedure QUICKSORT, which sorts an array A = 〈a1, . . . ,an〉 in place (see Figure 9.3):

Algorithm: QUICKSORT(A)

1. Choose an element x ∈ A uniformly at random. We will call x the “pivot.”

2. Partition A around x.

3. Sort the elements less than x recursively.

4. Sort the elements greater than x recursively.

We saw in recitation that the expected running time of QUICKSORT is Θ(n lgn). In this lecture we’ll
use the Chernoff bound to show that, for some constant c ≥ 1, the probability that QUICKSORT takes
more than cn lgn time on any given input is at most 1

n . In fact, what we’ll show is that after time
cn lgn, the probability that the working subarray containing any given element a ∈ A consists of
more than one element is at most 1

n2 . Once this is established, the union bound shows that the
probability that there exists any working subarray with more than one element is at most 1

n . That
is to say, let A = 〈a1, . . . ,an〉 and let E i be the event that after time cn lgn, the working subarray
containing ai has more than one element. Then the union bound states that

Pr
[∃ working subarray with

more than one element

]
=Pr

[
n⋃

i=1
E i

]
≤

n∑
i=1

Pr
[
E i

]≤ n
(

1
n2

)
= 1

n
.

(In general, the union bound says that the probability of a finite or countably infinite union of events
E i is at most the sum of their individual probabilities. The intuition is that equality is achieved
when the E i ’s are pairwise disjoint, and any overlap only diminishes the size of the union.)

All that remains is to find c such that, for any array A,

Pr
[
E i

]≤ 1
n2 for all i = 1, . . . ,n.

As in Lecture 8, we define a “good” pivot x in an array A to be a pivot such that

1
10 |A| ≤ rank(x)≤ 9

10 |A| .
Thus, a good pivot splits the current array into two subarrays each at most 9

10 as big. Let X i,k be the
indicator random variable

X i,k =
{

0 if, in the kth iteration, a good pivot was chosen for ai ’s subarray
1 otherwise.

Lec 9 – pg. 6 of 9

(By “the kth iteration,” we mean all calls to QUICKSORT at recursive depth k. Thus, the kth iteration
will consist of 2k−1 recursive calls to QUICKSORT, assuming none of the subarrays have shrunk to
size 1 yet.) Note two things:

• E
[
X i,k

] = 0.2 for all i and all k. (To reduce the amount of bookkeeping we have to do, we will
assume that pivots continue to be chosen even after an element’s subarray is reduced to size 1,
and that the probability of choosing a good pivot continues to be 0.8.)

• For a fixed k, the variables X1,k, X2,k, . . . , Xn,k are dependent on each other. However, for a fixed
i, the variables X i,1, X i,2, . . . are independent of each other.

For a fixed i and a fixed K , we have

E

[
K∑

k=1
X i,k

]
= 0.2K .

Thus, by the Chernoff bound (with r = 0.1K), we have

Pr

[
K∑

k=1
X i,k > 0.2K +0.1K

]
≤ exp

(
−2(0.1K)2

K

)
= exp(−0.02K) .

Now let K = 100lnn. We obtain

Pr

[
K∑

k=1
X i,k > 0.3K

]
≤ 1

n2 .

On the other hand, if
∑K

k=1 X i,k ≤ 0.3K , then at least 0.7K of the first K pivots were good, and the
size of the working subarray containing ai after K steps is at most

n ·
(

9
10

)0.7K
= n ·

(
9

10

)70lnn
= n70ln(9/10)+1 ≈ n−6.3 < 1

(i.e., the size is at most 1; the reason for the fractional number is that we are ignoring issues of
rounding). Thus, after K = 100lnn iterations, the probability that the working subarray containing
ai has more than one element is at most 1

n2 . So by the union bound, the probability that QUICKSORT

requires more than K iterations is at most 1
n .

While the sizes of the inputs to each iteration and the total number of iterations required are
random, the running time of the non-recursive part of QUICKSORT is deterministic: It takes Θ(A)
time to pick a random element and partition around that element. Let’s say it takes at most τA time
to do this, where τ is some appropriately chosen constant. Now, if the sizes of the inputs to the kth
iteration are m1, . . . ,m`, then the quantities m1, . . . ,m` are random, but we know

∑`
λ=1 mλ = n, so the

total amount of time required by the kth iteration is at most
∑`
λ=1τmλ = τn. Thus, the probability

that QUICKSORT takes more than Kτn = (100τ)n lnn time is at most 1/n. This is what we set out to
show in the beginning of this section, with c = 100τ.

To recap:

How can we argue about randomized algorithms?

• Identify the random choices in the algorithm.
• After fixing the random choices, we have a deterministic algorithm.

In this example, the random choices were the pivots. Fixing the sequence of choices of pivots, we
were able to analyze

∣∣A i,k
∣∣, the size of the subarray containing ai after k iterations, for each i and k

(see Figure 9.4).

Lec 9 – pg. 7 of 9

Random choices at depth 1
∣∣A1,1

∣∣= n
∣∣A2,1

∣∣= n · · ·
Random choices at depth 2

∣∣A1,2
∣∣= 0.3n

∣∣A2,2
∣∣= 0.8n · · ·

...
...

...
. . .

Figure 9.4. The values 0.3n and 0.8n are just examples, and of course depend on the sequence of random choices. Once
the sequence of random choices is fixed, we would like to know how many rows down we must go before all entries are 1.

9.3 Monte Carlo Sampling

Suppose that out of a large population U , there occurs a certain phenomenon in a subset S ⊆ U .
Given an element x, we are able to test whether x ∈ S. How can we efficiently estimate |S|

|U |? For
example, how can we efficiently estimate what fraction of the world’s population is left-handed, or
what percentage of voters vote Republican?

There is an elegant simple solution to this problem: Choose a k-element sample A = {x1, . . . , xk}⊆
U uniformly at random. We then estimate |S|

|U | by the quantity Ŝ = |A∩S|
|A| = 1

k

∣∣{i : xi ∈ S
}∣∣, figuring that

the chance that an element a ∈ A belongs to S ought to be the same as the chance that a general
element x ∈ U belongs to S. Thus, we are relying heavily on our ability to pick a truly uniform
sample.5 Assuming this reliance is safe, kŜ = |A∩S| is a binomial random variable with parameters(
k, |S|

|U |
)
. In particular, the expected value of Ŝ is the exact correct answer |S|

|U | . Thus, the Chernoff
bound states that for any r > 0,

Pr
[
Ŝ ≥ |S|

|U | + r
]
=Pr

[
kŜ ≥ E[

kŜ
]+kr

]
≤ exp

(−2kr2)
.

Exercise 9.1. How can we use the Chernoff bound to give an upper bound on Pr
[
Ŝ ≤ |S|

|U | − r
]
? (Hint:

replace S by its complement U \ S.)

9.4 Amplification

Suppose we are given a Monte Carlo algorithm which always runs in time T and returns the correct
answer with probability 2/3. (Assume there is a unique correct answer.) Then, for any ε> 0, we can
create a new randomized algorithm which always runs in time O

(
T lg 1

ε

)
and outputs an incorrect

answer with probability at most ε. How?
The plan is to run the original algorithm k times, where k = O

(
lg 1

ε

)
is a quantity which we will

determine later. The algorithm should then output whichever answer occurred most frequently out
of the k computed answers. To bound the probability of error, let I j be the indicator random variable
which equals 1 if the jth run returns an incorrect answer, and let I = ∑k

j=1 I j. Then I is a binomial
random variable with parameters

(
k, 1

3
)
. Thus, by the Chernoff bound,

Pr
[
we ultimately return
an incorrect answer

]
≤Pr

[
I ≥ 1

2 k
]=Pr

[
I ≥ E [I]+ 1

6 k
]
≤ exp

(− 1
18 k

)
.

5 In practice, it could be quite hard to pick a uniform sample. For example, what if you wanted figure out what proportion
of New Yorkers speak Chinese? How much of your random sampling should be done in Chinatown? Without the help of
extensive census data, it can be hard to make unbiased choices.

Lec 9 – pg. 8 of 9

Thus, the probability of error will be at most ε if we let k = 18ln 1
ε
.

Exercise 9.2. Suppose that instead of returning the correct answer with probability 2/3, our Monte
Carlo algorithm returned the correct answer with probability p. What conditions on p allow the above
strategy to work? In terms of p and ε, how many times must we run the Monte Carlo algorithm?

Lec 9 – pg. 9 of 9

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Randomized Algorithms II
	The Central Limit Theorem and the Chernoff Bound
	Analysis of Quicksort
	Monte Carlo Sampling
	Amplification

