
Lecture 4 van Emde Boas Spring 2015

Lecture 4: Divide and Conquer:

van Emde Boas Trees

• Series of Improved Data Structures

• Insert, Successor

• Delete

• Space

This lecture is based on personal communication with Michael Bender, 2001.

Goal

We want to maintain n elements in the range {0, 1, 2, . . . , u − 1} and perform Insert,
Delete and Successor operations in O(log log u) time.

• If n = nO(1) or n(log n)O(1)
, then we have O(log log n) time operations

– Exponentially faster than Balanced Binary Search Trees

– Cooler queries than hashing

• Application: Network Routing Tables

– u = Range of IP Addresses → port to send (u = 232 in IPv4)

Where might the O(log log u) bound arise ?

• Binary search over O(log u) elements

• Recurrences
log u

– T(log u) = T 2 +O(1)
√

– T(u) = T(u) +O(1)

Improvements

We will develop the van Emde Boas data structure by a series of improvements on
a very simple data structure.

1

6.046J

Lecture 4 van Emde Boas Spring 2015

Bit Vector

We maintain a vector V of size u such that V[x] = 1 if and only if x is in the set.
Now, inserts and deletes can be performed by just flipping the corresponding bit
in the vector. However, successor/predecessor requires us to traverse through the
vector to find the next 1-bit.

• Insert/Delete: O(1)

• Successor/Predecessor: O(u)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

Figure 1: Bit vector for u = 16. THe current set is {1, 9, 10, 15}.

Split Universe into Clusters
√

We can improve performance by splitting up the range {0, 1, 2, . . . , u − 1} into u√ √
clusters of size u. If x = i u + j, then V[x] = V.Cluster[i][j].

√
low(x) = x mod u = j x

high(x) = √ = i
u√

index(i, j) = i u + j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

V.Cluster[0] V.Cluster[1] V.Cluster[2] V.Cluster[3]

√
Figure 2: Bit vector (u = 16) split into 16 = 4 clusters of size 4.

• Insert:

– Set V.cluster[high(x)][low(x)] = 1 O(1)

2

6.046J

Lecture 4	 van Emde Boas Spring 2015

– Mark cluster high(x) as non-empty	 O(1)

•	 Successor:
√

– Look within cluster high(x)	 O(u)
√

– Else, find next non-empty cluster i	 O(u)
√

– Find minimum entry j in that cluster	 O(u)
√

– Return index(i, j)	 Total = O(u)

Recurse
√

The three operations in Successor are also Successor calls to vectors of size u. We
can use recursion to speed things up.

√	 √ •	 V.cluster[i] is a size- u van Emde Boas structure (∀ 0 ≤ i < u)

√
 • V.summary is a size- u van Emde Boas structure

• V.summary[i] indicates whether V.cluster[i] is nonempty

INSERT(V, x)

1 Insert(V.cluster[high(x)], low[x])
2 Insert(V.summary, high[x])

So, we get the recurrence:
√

T(u) = 2T(u) +O(1)
log u

T'(log u) = 2T' +O(1)
2

=⇒ T(u) = T'(log u) = O(log u)

SUCCESSOR(V, x)

1 i = high(x)
2 j = Successor(V.cluster[i], j)
3 if j == ∞
4 i = Successor(V.summary, i)
5 j = Successor(V.cluster[i], −∞)
6 return index(i, j)

3

6.046J

Lecture 4	 van Emde Boas Spring 2015

√
T(u) = 3T(u) +O(1)

log u

T ' (log u) = 3T ' +O(1)

2

(log u) = O((log u)log 3) ≈ O((log u)1.585)=⇒ T(u) = T '

To obtain the O(log log u) running time, we need to reduce the number of re
cursions to one.

Maintain Min and Max

We store the minimum and maximum entry in each structure. This gives an O(1)
time overhead for each Insert operation.

SUCCESSOR(V, x)

1 i = high(x)

2 if low(x) < V.cluster[i].max

3 j = Successor(V.cluster[i], low(x))

4 else i = Successor(V.summary, high(x))

5 j = V.cluster[i].min

6 return index(i, j)

√
T(u) = T(u) +O(1)

=⇒ T(u) = O(log log u)

Don’t store Min recursively

The Successor call now needs to check for the min separately.

if x < V.min : return V.min	 (1)

4

6.046J

()

Lecture 4 van Emde Boas Spring 2015

INSERT(V, x)

1 if V.min == None
2 V.min = V.max = x I O(1) time
3 return
4 if x < V.min
5 swap(x ↔ V.min)
6 if x > V.max
7 V.max = x)
8 if V.cluster[high(x) == None
9 Insert(V.summary, high(x)) I First Call

10 Insert(V.cluster[high(x)], low(x)) I Second Call

If the first call is executed, the second call only takes O(1) time. So

√
T(u) = T(u) + O(1)

=⇒ T(u) = O(log log u)

DELETE(V, x)

1 if x == V.min I Find new min
2 i = V.summary.min
3 if i = None
4 V.min = V.max = None I O(1) time
5 return
6 V.min = index(i, V.cluster[i].min) I Unstore new min
7 Delete(V.cluster[high(x)], low(x)) I First Call
8 if V.cluster[high(x)].min == None
9 Delete(V.summary, high(x)) I Second Call

10 I Now we update V.max
11 if x == V.max
12 if V.summary.max = None
13 else
14 i = V.summary.max
15 V.max = index(i, V.cluster[i].max)

If the second call is executed, the first call only takes O(1) time. So

√
T(u) = T(u) + O(1)

=⇒ T(u) = O(log log u)

5

6.046J

Lecture 4	 van Emde Boas Spring 2015

Lower Bound [Patrascu & Thorup 2007]

Even for static queries (no Insert/Delete)

• Ω(log log u) time per query for u = n(log n)O(1)

• O(n · poly(log n)) space

Space Improvements

We can improve from Θ(u) to O(n log log u).

• Only create nonempty clusters

– If V.min becomes None, deallocate V

• Store V.cluster as a hashtable of nonempty clusters

• Each insert may create a new structure Θ(log log u) times (each empty insert)

– Can actually happen [Vladimir ˇ at]Cun´

• Charge pointer to structure (and associated hash table entry) to the structure

This gives us O(n log log u) space (but randomized).

Indirection

We can further reduce to O(n) space.

•	 Store vEB structure with n = O(log log u) using BST or even an array

=⇒ O(log log n) time once in base case

•	 We use O(n/ log log u) such structures (disjoint)

n
=⇒ O(· log log u) = O(n) space for small log log u

• Larger structures “store” pointers to them

n=⇒ O(· log log u) = O(n) space for large log log u

• Details: Split/Merge small structures

6

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

