
Lecture 8 Hashing Spring 2015

Lecture 8: Hashing

Course Overview

This course covers several modules:

1. Review: dictionaries, chaining, simple uniform

2. Universal hashing

3. Perfect hashing

Review

Dictionary Problem

A dictionary is an Abstract Data Type (ADT) that maintains a set of items. Each
item has a key. The dictionary supports the following operations:

• insert(item): add item to set

• delete(item): remove item from set

• search(key): return item with key if it exists

We assume that items have distinct keys (or that inserting new ones clobbers old
ones).

This problem is easier than predecessor/successor problems solved in previous
lecture (by van Emde Boas trees, or by AVL/2-3 trees/skip lists).

Hashing from 6.006

Goal: O(1) time per operation and O(n) space complexity.
Definitions:

• u = number of keys over all possible items

• n = number of keys/items currently in the table

• m = number of slots in the table

1

6.046J

Lecture 8 Hashing Spring 2015

Solution: hashing with chaining
Assuming simple uniform hashing,

1
Pr {h(k1) = h(k2)} =
=k2k1 � m

we achieve Θ(1 + α) time per operation, where α = n is called load factor. The
m

downside of the algorithm is that it requires assuming input keys are random, and it
only works in average case, like basic quicksort. Today we are going to remove the
unreasonable simple uniform hashing assumption.

Etymology

The English ‘hash’ (1650s) means “cut into small pieces”, which comes from the
French ‘hacher‘ which means “chop up”, which comes from the Old French ‘hache’
which means “axe” (cf. English ‘hatchet’). Alternatively, perhaps they come from
Vulcan ‘la’ash’, which means “axe”. (R.I.P. Leonard Nimoy.)

Universal Hashing

The idea of universal hashing is listed as following:

• choose a random hash function h from H

• require H to be a universal hashing family such that

1
Pr {h(k) = h(k')} ≤ for all k = k'
h∈H m

.

2

6.046J

�

� �

Lecture 8	 Hashing Spring 2015

•	 now we just assume h is random, and make no assumption about input keys.
(like Randomized Quicksort)

Theorem: For n arbitrary distinct keys and random h ∈ H, where H is a universal
hashing family,

n
E[number of keys colliding in a slot] ≤ 1 + α where α =

m

1 if h(ki) = h(kj)

Proof : Consider keys k1, k2, . . . , kn. Let Ii,j =
0 otherwise

. Then we have

E[Ii,j] = Pr{Ii,j = 1}

= Pr{h(ki) = h(kj)}
1

(1)

≤ for any j = i
m

Ln
j=1

E[# keys hashing to the same slot as ki] = E Ii,j

n L

E[Ii,j] (linearity of expectation) =

j=1 L

E[Ii,j] + E[Ii,i]=

≤

j=i

n
m

+ 1

(2)

D
From the above theorem, we know that Insert, Delete, and Search all take O(1+α)

expected time. Here we give some examples of universal hash functions.

All hash functions: H = {all hash functions h : {0, 1, . . . , u− 1} → {0, 1, . . . ,m−
1}}. Apparently, H is universal, but it is useless. On one hand, storing a single
hashing function h takes log(mu) = u log(m) bits » n bits. On the other hand, we
would need to precompute u values, which takes Ω(u) time.

Dot-product hash family:
Assumptions

•	 m is a prime

3

6.046J

6

6

Lecture 8 Hashing Spring 2015

• u = mr where r is an integer

In real cases, we can always round up m and u to satisfy the above assumptions. Now

let’s view keys in base m: k = 〈k0, k1, . . . , kr−1〉. For key a = 〈a0, a1, a2, . . . , ar−1〉,
define

ha(k) = a · k mod m (dot product)

r−1

=
∑ (3)

aiki mod m
i=0

Then our hash family is H = {ha | a ∈ {0, 1, . . . , u− 1}}
Storing ha ∈ H requires just storing one key, which is a. In the word RAM

model, manipulating O(1) machine words takes O(1) time and “objects of interest”

(here, keys) fit into a machine word. Thus computing ha(k) takes O(1) time.

Theorem: Dot-product hash family H is universal.

Proof : Take any two keys k = k′. They must differ in some digits. Say kd = kd′ .

Define not d = {0, 1, . . . , r − 1} \ {d}. Now we have

r−1 r−1

Pr{ha(k) = ha(k
′)} = Pr

{∑
aiki =

∑
aiki
′ (mod m)

a a { i=0 i=0

}

= Pr
∑

aiki + adkd =
∑

aiki
′ + adkd

′ (mod m)
a { i=d i=d

}

= Pr
∑

ai(ki ki
′) + ad(kd kd

′) = 0 (mod m)
a { i=d

− −

}

= Pr a = −(k − k′)−1d d d

∑
ai(ki − ki′) (mod m)

a (4)
i=d

}
(m is prime⇒ Zm has multiplicative inverses)

= E [Pr{ad = f(k, k′, anot d)
anot d ad

}]

(=
∑

Pr{anot d = x}Pr{ad = f(k, k′, x)
ad

x

})

= E
anot d

[
1

m
1

]
=
m

�

4

6 6

6 6

6

6

6.046J

Lecture 8 Hashing Spring 2015

Another universal hash family from CLRS: Choose prime p ≥ u (once). Define
hab(k) = [(ak + b) mod p)] mod m. Let H = {hab | a, b ∈ {0, 1, . . . , u− 1}}.

Perfect Hashing

Static dictionary problem: Given n keys to store in table, only need to support
search(k). No insertion or deletion will happen.

Perfect hashing: [Fredman, Komlós, Szemerédi 1984]

• polynomial build time with high probability (w.h.p.)

• O(1) time for search in worst case

• O(n) space in worst case

Idea: 2-level hashing

The algorithm contains the following two major steps:

Step 1: Pick h1 : {0, 1, . . . , u− 1} → {0, 1, . . . ,m− 1} from a universal hash family
for m = Θ(n) (e.g., nearby prime). Hash all items with chaining using h1.

5

6.046J

�� �

Lecture 8 Hashing Spring 2015

Step 2: For each slot j ∈ {0, 1, . . . ,m − 1}, let lj be the number of items in slot j.
lj = |{i | h(ki) = j}|. Pick h2,j : {0, 1, . . . , u − 1} → {0, 1, . . . ,mj } from a universal
hash family for lj

2 ≤ mj ≤ O(lj
2) (e.g., nearby prime). Replace chain in slot j with

hashing-with-chaining using h2,j .

L m−1The space complexity is O(n + l2). In order to reduce it to O(n), we need j=0 j

to add two more steps:

Lm−1 l2Step 1.5: If j > cn where c is a chose constant, then redo Step 1. j=0

Step 2.5: While h2,j (ki) = h2,j (ki
') for any i = i ' , j, repick h2,j and rehash those lj .

The above two steps guarantee that there are no collisions at second level, and
the space complexity is O(n). As a result, search time is O(1). Now let’s look at the
build time of the algorithm. Both Step 1 and Step 2 are O(n). How about Step 1.5
and Step 2.5?

For Step 2.5, L
Pr{h2,j (ki) = h2,j (ki

') for some i = i ' } ≤ Pr{h2,j (ki) = h2,j (ki
')} (union bound)

h2,j h2,j
i=i,

lj 1 ≤ ·
2 l2

j

1
<

2
(5)

As a result, each trial is like a coin flip. If the outcome is “tail”, we move to the
next step. By Lecture 7, we have E[#trials] ≤ 2 and #trials = O(log n) w.h.p. By a
Chernoff bound, lj = O(log n) w.h.p., so each trial takes O(log n) time. Because we
have to do this for each j, the total time complexity is O(log n) · O(log n) · O(n) =
O(n log2 n) w.h.p.

6

6.046J

6

6
6

Lecture 8 Hashing Spring 2015

1 if h(ki) = h(k′)
For Step 1.5, we define I

{
i

i,i′ = . Then we have
0 otherwise

E

[
m∑−1 n n

l2j =
j=0

]
E

[∑
I

i=1

∑
i,i′

i′=1

]
n

=
∑∑n

E[Ii,i′] (linearity of expectation)
(6)

i=1 i′=1

n 1≤ n+ 2
2
·
m

= O(n)

(
becau

)
se m = Θ(n)

By Markov inequality, we have

m−1 m−1
2 j=0 l

2
j 1

Pr lj cn
h1

{∑
≤

}
≤
∑
cn

≤
2

j=0

for a sufficiently large constant c. By Lecture 7, we have E[#trials] ≤ 2 and #trials =

O(log n) w.h.p. As a result, Step 1 and Step 1.5 combined takes O(n log n) time w.h.p.

7

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

