Lecture 11: All-Pairs Shortest Paths

Introduction

Different types of algorithms can be used to solve the all-pairs shortest paths problem:

- Dynamic programming
- Matrix multiplication
- Floyd-Warshall algorithm
- Johnson's algorithm
- Difference constraints

Single-source shortest paths

- given directed graph $G=(V, E)$, vertex $s \in V$ and edge weights $w: E \rightarrow \mathbb{R}$
- find $\delta(s, v)$, equal to the shortest-path weight $s->v, \forall v \in V$ (or $-\infty$ if negative weight cycle along the way, or ∞ if no path)

Situtation	Algorithm	Time
unweighted $(w=1)$	BFS	$O(V+E)$
non-negative edge weights	Dijkstra	$O(E+V \lg V)$
general	Bellman-Ford	$O(V E)$
acyclic graph (DAG)	Topological sort + one pass of B-F	$O(V+E)$

All of the above results are the best known. We achieve a $O(E+V \lg V)$ bound on Dijkstra's algorithm using Fibonacci heaps.

All-pairs shortest paths

- given edge-weighted graph, $G=(V, E, w)$
- find $\delta(u, v)$ for all $u, v \in V$

A simple way of solving All-Pairs Shortest Paths (APSP) problems is by running a single-source shortest path algorithm from each of the V vertices in the graph.

Situtation	Algorithm	Time	$E=\Theta\left(V^{2}\right)$
unweighted $(w=1)$	$\|V\| \times \mathrm{BFS}$	$O(V E)$	$O\left(V^{3}\right)$
non-negative edge weights	$\|V\| \times$ Dijkstra	$O\left(V E+V^{2} \lg V\right)$	$O\left(V^{3}\right)$
general	$\|V\| \times$ Bellman-Ford	$O\left(V^{2} E\right)$	$O\left(V^{4}\right)$
general	Johnson's	$O\left(V E+V^{2} \lg V\right)$	$O\left(V^{3}\right)$

These results (apart from the third) are also best known - don't know how to beat $|V| \times$ Dijkstra

Algorithms to solve APSP

Note that for all the algorithms described below, we assume that $w(u, v)=\infty$ if $(u, v) \notin E$.

Dynamic Programming, attempt 1

1. Sub-problems: $d_{u v}^{(m)}=$ weight of shortest path $u \rightarrow v$ using $\leq m$ edges
2. Guessing: What's the last edge (x, v) ?
3. Recurrence:

$$
\begin{gathered}
d_{u v}^{(m)}=\min \left(d_{u x}^{(m-1)}+w(x, v) \text { for } x \in V\right) \\
d_{u v}^{(0)}= \begin{cases}0 & \text { if } u=v \\
\infty & \text { otherwise }\end{cases}
\end{gathered}
$$

4. Topological ordering: for $m=0,1,2, \ldots, n-1$: for u and v in V :

5. Original problem:

If graph contains no negative-weight cycles (by Bellman-Ford analysis), then shortest path is simple $\Rightarrow \delta(u, v)=d_{u v}^{(n-1)}=d_{u v}^{(n)}=\cdots$

Time complexity

In this Dynamic Program, we have $O\left(V^{3}\right)$ total sub-problems.
Each sub-problem takes $O(V)$ time to solve, since we need to consider V possible choices. This gives a total runtime complexity of $O\left(V^{4}\right)$.

Note that this is no better than $|V| \times$ Bellman-Ford

Bottom-up via relaxation steps

1 for $m=1$ to n by 1
2 for u in V
$3 \quad$ for v in V
$4 \quad$ for x in V
$5 \quad$ if $d_{u v}>d_{u x}+d_{x v}$
$6 \quad d_{u v}=d_{u x}+d_{x v}$
In the above pseudocode, we omit superscripts because more relaxation can never hurt.

Note that we can change our relaxation step to $d_{u v}^{(m)}=\min \left(d_{u x}^{[m / 2\rceil}+d_{x v}^{[m / 2\rceil}\right.$ for $\left.x \in V\right)$. This change would produce an overall running time of $O\left(n^{3} \lg n\right)$ time. (student suggestion)

Matrix multiplication

Recall the task of standard matrix multiplication,
Given $n \times n$ matrices A and B, compute $C=A \cdot B$, such that $c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}$.

- $O\left(n^{3}\right)$ using standard algorithm
- $O\left(n^{2.807}\right)$ using Strassen's algorithm
- $O\left(n^{2.376}\right)$ using Coppersmith-Winograd algorithm
- $O\left(n^{2.3728}\right)$ using Vassilevska Williams algorithm

Connection to shortest paths

- Define $\oplus=$ min and $\odot=+$
- Then, $\mathrm{C}=A \odot B$ produces $c_{i j}=\min _{k}\left(a_{i k}+b_{k j}\right)$
- Define $D^{(m)}=\left(d_{i j}^{(m)}\right), W=(w(i, j)), V=\{1,2, \ldots, n\}$

With the above definitions, we see that $D^{(m)}$ can be expressed as $D^{(m-1)} \odot W$. In other words, $D^{(m)}$ can be expressed as the circle-multiplication of W with itself m times.

Matrix multiplication algorithm

- $n-2$ multiplications $\Rightarrow O\left(n^{4}\right)$ time (stil no better)
- Repeated squaring: $\left(\left(W^{2}\right)^{2}\right)^{2 \cdots}=W^{2^{\lg n}}=W^{n-1}=(\delta(i, j))$ if no negativeweight cycles. Time complexity of this algorithm is now $O\left(n^{3} \lg n\right)$.

We can't use Strassen, etc. since our new multiplication and addition operations don't support negation.

Floyd-Warshall: Dynamic Programming, attempt 2

1. Sub-problems: $c_{u v}^{(k)}=$ weight of shortest path $u \rightarrow v$ whose intermediate vertices $\in\{1,2, \ldots, k\}$
2. Guessing: Does shortest path use vertex k ?

3. Recurrence:

$$
\begin{gathered}
c_{u v}^{(k)}=\min \left(c_{u v}^{(k-1)}, c_{u k}^{(k-1)}+c_{k v}^{(k-1)}\right) \\
c_{u v}^{(0)}=w(u, v)
\end{gathered}
$$

4. Topological ordering: for k : for u and v in V :
5. Original problem: $\delta(u, v)=c_{u v}^{(n)}$. Negative weight cycle \Leftrightarrow negative $c_{u u}^{(n)}$

Time complexity

This Dynamic Program contains $O\left(V^{3}\right)$ problems as well. However, in this case, it takes only $O(1)$ time to solve each sub-problem, which means that the total runtime of this algorithm is $O\left(V^{3}\right)$.

Bottom up via relaxation

```
\(C=(w(u, v))\)
for \(k=1\) to \(n\) by 1
        for \(u\) in \(V\)
            for \(v\) in \(V\)
            if \(c_{u v}>c_{u k}+c_{k v}\)
            \(c_{u v}=c_{u k}+c_{k v}\)
```

As before, we choose to ignore subscripts.

Johnson's algorithm

1. Find function $h: V \rightarrow \mathbb{R}$ such that $w_{h}(u, v)=w(u, v)+h(u)-h(v) \geq 0$ for all $u, v \in V$ or determine that a negative-weight cycle exists.
2. Run Dijkstra's algorithm on $\left(V, E, w_{h}\right)$ from every source vertex $s \in V \Rightarrow$ get $\delta_{h}(u, v)$ for all $u, v \in V$
3. Given $\delta_{h}(u, v)$, it is easy to compute $\delta(u, v)$

Claim. $\delta(u, v)=\delta_{h}(u, v)-h(u)+h(v)$
Proof. Look at any $u \rightarrow v$ path p in the graph G

- Say p is $v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}$, where $v_{0}=u$ and $v_{k}=v$.

$$
\begin{aligned}
w_{h}(p) & =\sum_{i=1}^{k} w_{h}\left(v_{i-1}, v_{i}\right) \\
& =\sum_{i=1}^{k}\left[w\left(v_{i-1}, v_{i}\right)+h\left(v_{i-1}\right)-h\left(v_{i}\right)\right] \\
& =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)+h\left(v_{0}\right)-h\left(v_{k}\right) \\
& =w(p)+h(u)-h(v)
\end{aligned}
$$

- Hence all $u \rightarrow v$ paths change in weight by the same offset $h(u)-h(v)$, which implies that the shortest path is preserved (but offset).

How to find h ?

We know that

$$
w_{h}(u, v)=w(u, v)+h(u)-h(v) \geq 0
$$

This is equivalent to,

$$
h(v)-h(u) \leq w(u, v)
$$

for all $(u, v) \in V$. This is called a system of difference constraints.
Theorem. If (V, E, w) has a negative-weight cycle, then there exists no solution to the above system of difference constraints.

Proof. Say $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{0}$ is a negative weight cycle.
Let us assume to the contrary that the system of difference constraints has a solution; let's call it h.

This gives us the following system of equations,

$$
\begin{aligned}
h\left(v_{1}\right)-h\left(v_{0}\right) & \leq w\left(v_{0}, v_{1}\right) \\
h\left(v_{2}\right)-h\left(v_{1}\right) & \leq w\left(v_{1}, v_{2}\right) \\
& \vdots \\
h\left(v_{k}\right)-h\left(v_{k-1}\right) & \leq w\left(v_{k-1}, v_{k}\right) \\
h\left(v_{0}\right)-h\left(v_{k}\right) & \leq w\left(v_{k}, v_{0}\right)
\end{aligned}
$$

Summing all these equations gives us

$$
0 \leq w(\text { cycle })<0
$$

which is obviously not possible.
From this, we can conclude that no solution to the above system of difference constraints exists if the graph (V, E, w) has a negative weight cycle.

Theorem. If (V, E, w) has no negative-weight cycle, then we can find a solution to the difference constraints.

Proof. Add a new vertex s to G, and add edges (s, v) of weight 0 for all $v \in V$.

- Clearly, these new edges do not introduce any new negative weight cycles to the graph
- Adding these new edges ensures that there now exists at least one path from s to v. This implies that $\delta(s, v)$ is finite for all $v \in V$
- We now claim that $h(v)=\delta(s, v)$. This is obvious from the triangle inequality: $\delta(s, u)+w(u, v) \geq \delta(s, v) \Leftrightarrow \delta(s, v)-\delta(s, u) \leq w(u, v) \Leftrightarrow h(v)-h(u) \leq w(u, v)$

Time complexity

1. The first step involves running Bellman-Ford from s, which takes $O(V E)$ time. We also pay a pre-processing cost to reweight all the edges $(O(E))$
2. We then run Dijkstra's algorithm from each of the V vertices in the graph; the total time complexity of this step is $O\left(V E+V^{2} \lg V\right)$
3. We then need to reweight the shortest paths for each pair; this takes $O\left(V^{2}\right)$ time.

The total running time of this algorithm is $O\left(V E+V^{2} \lg V\right)$.

Applications

Bellman-Ford consult any system of difference constraints (or report that it is unsolvable) in $O(V E)$ time where $V=$ variables and $E=$ constraints.

An exercise is to prove the Bellman-Ford minimizes $\max _{i} x_{i}-\min _{i} x_{i}$.
This has applications to

- Real-time programming
- Multimedia scheduling
- Temporal reasoning

For example, you can bound the duration of an event via difference constraint $L B \leq t_{\text {end }}-t_{\text {start }} \leq U B$, or bound a gap between events via $0 \leq t_{\text {start } 2}-t_{\text {end } 1} \leq \varepsilon$, or synchronize events via $\left|t_{\text {start } 1}-t_{\text {start } 2}\right| \leq \varepsilon$ or 0 .

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

