

 
 
 
 
 
 
 

Design and Analysis of

Algorithms

6.046J/18.401J

LECTURE 13
Network Flow
• Flow networks
• Maximum-flow problem
• Cuts
• Residual networks
• Augmenting paths
• Max-flow min-cut theorem

• Ford Fulkerson algorithm

Flow networks

Definition. A flow network is a directed graph
G = (V, E) with two distinguished vertices: a
source s and a sink t. Each edge (u, v) ∈ E has
a nonnegative capacity c(u, v). If (u, v) ∉ E,
then c(u, v) = 0.

Example:

s t

3
2

3

3

2
3

3

2

1

Design and Analysis of Algorithms L13.2© 2001–15 by Leiserson et al

 
 

A flow on a network

s t

1:3
2:2

2:3

1:3

1:2
2:3

1:3

2:2

flow capacity

u

Flow conservation (like Kirchoff's current law):

• Flow into u is 2 + 1 = 3.
• Flow out of u is 1 + 2 = 3.

INTUITION: View flow as a rate, not a quantity.
© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.3

The maximum-flow problem

Maximum-flow problem: Given a flow network
G, find a flow of maximum value on G.

s t

2:3
2:2

2:3

1:3

2:2
3:3

0:3

2:2

The value of the maximum flow is 4.

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.4

Flow network Assumptions

Assumption. If edge (u, v) ∈ E exists, then

(v, u) ∉ E.
Assumption. No self-loop edges (u, u) exist

s 1

2 u
s 1

2 u

u’
1

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.5

 

 

 

Net Flow

Definition. A (net) flow on G is a function

f : V × V → R satisfying the following:
• Capacity constraint: For all u, v ∈ V,

f (u, v) ≤ c(u, v).

• Flow conservation: For all u ∈ V – {s, t},

∑ f (u,v) = 0.
v∈V

• Skew symmetry: For all u, v ∈ V,

f (u, v) = –f (v, u).

Note: CLRS defines positive flows and net flows; these are

equivalent for our flow networks obeying our assumptions.

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.6

 

Notation

Definition. The value of a flow f, denoted by | f |,
is given by

f = ∑ f (s,v)
v∈V

= f (s,V) .
Implicit summation notation: A set used in
an arithmetic formula represents a sum over
the elements of the set.
• Example — flow conservation:

f (u, V) = 0 for all u ∈ V – {s, t}.

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.7

 
 
 

Simple properties of flow

Lemma.
• f (X, X) = 0,
• f (X, Y) = – f (Y, X),
• f (X∪Y, Z) = f (X, Z) + f (Y, Z) if X∩Y = ∅.

Theorem. | f | = f (V, t).
Proof.

| f | = f (s, V)
= f (V, V) – f (V–s, V) Omit braces.
= f (V, V–s)
= f (V, t) + f (V, V–s–t)
= f (V, t).

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.8

Flow into the sink

s t

2:3
2:2

2:3

1:3

2:2
3:3

0:3

2:2

| f | = f (s, V) = 4 f (V, t) = 4

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.9

Cuts

Definition. A cut (S, T) of a flow network G =
(V, E) is a partition of V such that s ∈ S and t ∈ T.
If f is a flow on G, then the flow across the cut is
f (S, T).

s t

2:3
2:2

2:3

1:3

2:2
3:3

0:3

2:2

∈ S
∈ T

f (S, T) = (2 + 2) + (– 2 + 1 – 1 + 2) = 4
© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.10

Another characterization of
flow value

Lemma. For any flow f and any cut (S, T), we
have | f | = f (S, T).
Proof. f (S, T) = f (S, V) – f (S, S)

= f (S, V)
= f (s, V) + f (S–s, V)
= f (s, V)
= | f |.

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.11

Capacity of a cut
Definition. The capacity of a cut (S, T) is c(S, T).

s t

2:3
2:2

2:3

1:3

2:2
3:3

0:3

2:2

c(S, T) = (3 + 2) + (1 + 3) = 9

∈ S

∈ T

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.12

Upper bound on the maximum
flow value

Theorem. The value of any flow is bounded
above by the capacity of any cut.
Proof. f = f (S,T)

= ∑∑ f (u, v)
u∈S v∈T

≤ ∑∑c(u, v)
u∈S v∈T

= c(S,T) .

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.13

Residual network

Definition. Let f be a flow on G = (V, E). The
residual network Gf (V, Ef) is the graph with
strictly positive residual capacities

cf (u, v) = c(u, v) – f (u, v) > 0.

Edges in Ef admit more flow.

If (v, u) ∉ E, c(v, u) = 0, but f (v, u) = – f (u, v).

|Ef | ≤ 2 |E|.

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.14

Flow and Residual Network

s

u v

t

x y

1:3
2:2

2:3

1:3

1:2
2:3

1:3

2:2

G

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.15

s

u v

t

x y

2
2

1

2

1
2

2

2

1
1

2

1

1
1

Gf

Augmenting paths

Definition. Any path from s to t in Gf is an aug
menting path in G with respect to f. The flow
value can be increased along an augmenting
path p by c f (p) = min {c f (u,v)}.

(u,v)∈p

s

u v

t

x y

2
2

1

2

1
2

2

2

1
1

2

1

1
1

Gf

p = {s, u, x, v, t}, cf (p) = 1

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.16

Augmented Flow Network

p = {s, u, x, v, t}, cf (p) = 1

G
 s

u v

t

x y

2:3
2:2

3:3

1:3

1:2
2:3

0:3

2:2

The value of the maximum flow is 4.
Note: Some flows on edges decreased.

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.17

 
 
 

Max-flow, min-cut theorem

Theorem. The following are equivalent:

1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.
Proof. Next time!

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.18

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.19

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

