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LECTURE 13 
Network Flow 
• Flow networks 
• Maximum-flow problem 
• Cuts 
• Residual networks 
• Augmenting paths 
• Max-flow min-cut theorem 

• Ford Fulkerson algorithm 



  

   
  

Flow networks 

Definition. A flow network is a directed graph
G = (V, E) with two distinguished vertices: a 
source s and a sink t. Each edge (u, v) ∈ E has 
a nonnegative capacity c(u, v). If (u, v) ∉ E, 
then c(u, v) = 0. 

Example: 
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A flow on a network 

s t 

1:3 
2:2 

2:3 

1:3 

1:2 
2:3 

1:3 

2:2 

flow capacity 

u 

Flow conservation (like Kirchoff's current law):

• Flow into u is 2 + 1 = 3. 
• Flow out of u is 1 + 2 = 3. 

INTUITION: View flow as a rate, not a quantity. 
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The maximum-flow problem 

Maximum-flow problem: Given a flow network 
G, find a flow of maximum value on G. 

s t 

2:3 
2:2 

2:3 

1:3 

2:2 
3:3 

0:3 

2:2 

The value of the maximum flow is 4. 
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Flow network Assumptions 

Assumption. If edge (u, v) ∈ E exists, then 

(v, u) ∉ E. 
Assumption.  No self-loop edges (u, u) exist 
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2 u 
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Net Flow 

Definition. A (net) flow on G is a function 

f  : V × V → R satisfying the following: 
• Capacity constraint: For all u, v ∈ V,
 

f (u, v) ≤ c(u, v). 

• Flow conservation: For all u ∈ V – {s, t}, 


∑ f (u,v) = 0. 
v∈V 

• Skew symmetry: For all u, v ∈ V,
 
f (u, v) = –f (v, u). 


Note: CLRS defines positive flows and net flows; these are

equivalent for our flow networks obeying our assumptions. 
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Notation 


Definition. The value of a flow f, denoted by | f |, 
is given by 

f = ∑ f (s,v) 
v∈V 

= f (s,V ) . 
Implicit summation notation: A set used in 
an arithmetic formula represents a sum over 
the elements of the set. 
• Example — flow conservation: 

f (u, V) = 0 for all u ∈ V – {s, t}. 
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Simple properties of flow 

Lemma. 
• f (X, X) = 0, 
• f (X, Y) = – f (Y, X), 
• f (X∪Y, Z) = f (X, Z) + f (Y, Z) if X∩Y = ∅. 

Theorem. | f | = f (V, t). 
Proof. 

| f | = f (s, V) 
= f (V, V) – f (V–s, V) Omit braces. 
= f (V, V–s) 
= f (V, t) + f (V, V–s–t) 
= f (V, t). 
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Flow into the sink 


s t 

2:3 
2:2 

2:3 
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2:2 
3:3 

0:3 

2:2 

| f | = f (s, V) = 4 f (V, t) = 4 
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Cuts 

Definition. A cut (S, T) of a flow network G = 
(V, E) is a partition of V such that s ∈ S and t ∈ T. 
If f  is a flow on G, then the flow across the cut is 
f (S, T). 

s t 

2:3 
2:2 

2:3 

1:3 

2:2 
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∈ S 
∈ T 

f (S, T) = (2 + 2) + (– 2 + 1 – 1 + 2)  = 4 
© 2001–15 by Leiserson et al Design and Analysis of Algorithms L13.10 




  
  
  
  
   

Another characterization of 
flow value 

Lemma.  For any flow f and any cut (S, T), we 
have | f | = f (S, T). 
Proof. f (S, T) = f (S, V) – f (S, S) 

= f (S, V) 
= f (s, V) + f (S–s, V) 
= f (s, V) 
= | f |. 
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Capacity of a cut 
Definition. The capacity of a cut (S, T) is c(S, T). 


s t 
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c(S, T) = (3 + 2) + (1 + 3)  = 9 

∈ S 

∈ T 
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Upper bound on the maximum
flow value 

Theorem. The value of any flow is bounded
above by the capacity of any cut. 
Proof. f = f (S,T ) 

= ∑∑ f (u, v) 
u∈S v∈T 

≤ ∑∑c(u, v) 
u∈S v∈T 

= c(S,T ) . 
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Residual network 

Definition. Let f  be a flow on G = (V, E). The 
residual network Gf (V, Ef ) is the graph with 
strictly positive residual capacities 

cf (u, v) = c(u, v) – f (u, v) > 0. 

Edges in Ef admit more flow. 

If (v, u) ∉ E, c(v, u) = 0, but f (v, u) = – f (u, v). 


|Ef | ≤ 2 |E|. 
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Flow and Residual Network 
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G 
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Augmenting paths 

Definition. Any path from s to t in Gf is an aug
menting path in G with respect to f. The flow 
value can be increased along an augmenting
path p by c f ( p) = min {c f (u,v)}. 

(u,v)∈p 
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p = {s, u, x, v, t},  cf (p) = 1 
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Augmented Flow Network 


p = {s, u, x, v, t},  cf (p) = 1 


G
 s 

u v 

t 

x y 
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2:2 

The value of the maximum flow is 4. 
Note: Some flows on edges decreased. 
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Max-flow, min-cut theorem 

Theorem. The following are equivalent:

1. | f | = c(S, T) for some cut (S, T). 
2. f is a maximum flow. 
3. f admits no augmenting paths. 
Proof. Next time! 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p) 
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