Lecture 17: Approximation Algorithms

- Definitions
- Vertex Cover
- Set Cover
- Partition

Approximation Algorithms and Schemes

Let $C_{\text {opt }}$ be the cost of the optimal algorithm for a problem of size n. An approximation algorithm for this problem has an approximation ratio $\varrho(n)$ if, for any input, the algorithm produces a solution of cost C such that:

$$
\max \left(\frac{C}{C_{o p t}}, \frac{C_{o p t}}{C}\right) \leq \varrho(n)
$$

Such an algorithm is called a $\varrho(n)$-approximation algorithm.

An approximation scheme that takes as input $\epsilon>0$ and produces a solution such that $C=(1+\epsilon) C_{\text {opt }}$ for any fixed ϵ, is a $(1+\epsilon)$-approximation algorithm.

A Polynomial Time Approximation Scheme (PTAS) is an approximation algorithm that runs in time polynomial in the size of the input, n. A Fully Polynomial Time Approximation Scheme (FPTAS) is an approximation algorithm that runs in time polynomial in both n and ϵ. For example, a $O\left(n^{2 / \epsilon}\right)$ approximation algorithm is a PTAS but not a FPTAS. A $O\left(n / \epsilon^{2}\right)$ approximation algorithm is a FPTAS.

Vertex Cover

Given an undirected graph $G(V, E)$, find a subset $V^{\prime} \subseteq V$ such that, for every edge $(u, v) \in E$, either $u \in V^{\prime}$ or $v \in V^{\prime}$ (or both). Furthermore, find a V^{\prime} such that $\left|V^{\prime}\right|$ is minimum. This is an NP-Complete problem.

Approximation Algorithm For Vertex Cover

Here we define algorithm Approx_Vertex_Cover, an approximation algorithm for Vertex Cover. Start with an empty set V^{\prime}. While there are still edges in E, pick an edge (u, v) arbitrarily. Add both u and v into V^{\prime}. Remove all edges incident on u or v. Repeat until there are no more edges left in E. Approx_Vertex_Cover runs in polynomial time.

Take for example the following graph G :

Approx_Vertex_Cover could pick edges $(b, c),(e, f)$ and (d, g), such that $V^{\prime}=$ $\{b, c, e, f, d, g\}$ and $\left|V^{\prime}\right|=6$. Hence, the cost is $C=\left|V^{\prime}\right|=6$. The optimal solution for this example is $\{b, d, e\}$, hence $C_{o p t}=3$.

Claim: Approx_Vertex_Cover is a 2-approximation algorithm.

Proof: Let $U \subseteq V$ be the set of all the edges that are picked by Approx_Vertex_Cover. The optimal vertex cover must include at least one endpoint of each edge in U (and other edges). Furthermore, no two edges in U share an endpoint. Therefore, $|U|$ is a lower bound for $C_{o p t}$. i.e. $C_{o p t} \geq|U|$. The number of vertices in V^{\prime} returned by Approx_Vertex_Cover is $2 \cdot|U|$. Therefore, $C=\left|V^{\prime}\right|=2 \cdot|U| \leq 2 C_{\text {opt }}$. Hence $C \leq 2 \cdot C_{\text {opt }}$.

Set Cover

Given a set X and a family of (possibly overlapping) subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq X$ such that $\cup_{i=1}^{m} S_{i}=X$, find a set $P \subseteq\{1,2,3, \cdots, m\}$ such that $\cup_{i \in P} S_{i}=X$. Furthermore find a P such that $|P|$ is minimum.

Set Cover is an NP-Complete problem.

Approximation Algorithm for Set Cover

Here we define algorithm Approx_Set_Cover, an approximation algorithm for Set Cover. Start by initializing the set P to the empty set. While there are still elements in X, pick the largest set S_{i} and add i to P. Then remove all elements in S_{i} from X and all other subsets S_{j}. Repeat until there are no more elements in X. Approx_Set_Cover runs in polynomial time.

In the following example, each dot is an element in X and each S_{i} are subsets of X.

Approx_Set_Cover selects sets $S_{1}, S_{4}, S_{5}, S_{3}$ in that order. Therefore it returns $P=$ $\{1,4,5,3\}$ and its cost $C=|P|=4$. The optimal solution is $P_{\text {opt }}=\left\{S_{3}, S_{4}, S_{5}\right\}$ and $C_{o p t}=\left|P_{o p t}\right|=3$.

Claim: Approx_Set_Cover is a $(\ln (n)+1)$-approximation algorithm (where $n=|X|$).
Proof: Let the optimal cover be $P_{\text {opt }}$ such that $C_{\text {opt }}=\left|P_{o p t}\right|=t$. Let X_{k} be the set of elements remaining in iteration k of Approx_Set_Cover. Hence, $X_{0}=X$. Then:

- for all k, X_{k} can be covered by t sets (from the optimal solution)
- one of them covers at least $\frac{\left|X_{k}\right|}{t}$ elements
- Approx_Set_Cover picks a set of (current) size $\geq \frac{\left|X_{k}\right|}{t}$
- for all $k,\left|X_{k+1}\right| \leq\left(1-\frac{1}{t}\right)\left|X_{k}\right|$ (More careful analysis (see CLRS, Ch. 35) relates $\varrho(n)$ to harmonic numbers. t should shrink.)
- for all $k,\left|X_{k+1}\right| \leq\left(1-\frac{1}{t}\right)^{k} \cdot n \leq e^{-k / t} \cdot n\left(n=\left|X_{0}\right|\right)$

Algorithm terminates when $\left|X_{k}\right|<1$, i.e., $\left|X_{k}\right|=0$ and will have $\operatorname{cost} C=k$.

$$
\begin{gathered}
e^{-k / t} \cdot n<1 \\
e^{k / t}>n
\end{gathered}
$$

Hence algorithm terminates when $\frac{k}{t}>\ln (n)$. Therefore $\frac{k}{t}=\frac{C}{C_{\text {opt }}} \leq \ln (n)+1$. Hence Approx_Set_Cover is a $(\ln (n)+1)$-approximation algorithm for Set Cover.

Notice that the approximation ratio gets worse for larger problems as it changes with n.

Partition

The input is a set $S=\{1,2, \cdots, n\}$ of n items with weights $s_{1}, s_{2}, \cdots, s_{n}$. Assume, without loss of generality, that the items are ordered such that $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$. Partition S into sets A and B to $\operatorname{minimize} \max (w(A), w(B))$, where $w(A)=\sum_{i \in A} S_{i}$ and $w(B)=\sum_{j \in B} S_{j}$.
Define $2 L=\sum_{i=1}^{n} s_{i}=w(S)$. Then optimal solution will have cost $C_{\text {opt }} \geq L$ by definition.

Partition is an NP-Complete problem. Want to find a PTAS $(1+\epsilon)$-approximation. (Note that 2-approximation in this case is trivial). Also, an FPTAS also exists for this problem.

Approximation Algorithm for Partition

Here we define Approx_Partition. Define $m=\left\lceil\frac{1}{\epsilon}\right\rceil-1 .\left(\epsilon \approx \frac{1}{m+1}\right)$ The algorithm proceeds in two phases.

First Phase: Find an optimal partition A^{\prime}, B^{\prime} of s_{1}, \cdots, s_{m}. This takes $O\left(2^{m}\right)$ time.
Second Phase: Initialize sets A and B to A^{\prime} and B^{\prime} respectively. Hence they already contain a partition of elements s_{1}, \cdots, s_{m}. Then, for each i, where i goes
from $m+1$ to n, if $w(A) \leq w(B)$, add i to A, otherwise add i to B.

Claim: Approx_Partition is a PTAS for Partition.

Proof: Without loss of generality, assume $w(A) \geq w(B)$. Then the approximation ratio is $\frac{C}{C_{\text {opt }}}=\frac{w(A)}{L}$. Let k be the last item added to A. There are two cases, either k was added in the first phase, or in the second phase.

Case 1: k is added to A in the first phase. This means that $A=A^{\prime}$. We have an optimal partition since we can't do better than $w\left(A^{\prime}\right)$ when we have $n \geq m$ items, and we know that $w\left(A^{\prime}\right)$ is optimal for the m items.

Case 2: k is added to A in the second phase. Here we know $w(A)-s_{k} \leq w(B)$ since this is why k was added to A and not to B. (Note that $w(B)$ may have increased after this last addition to A. Now, because $w(A)+w(B)=2 L, w(A)-s_{k} \leq$ $w(B)=2 L-w(A)$. Therefore $w(A) \leq L+\frac{s_{k}}{2}$. Since $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$, we can say that $s_{1}, s_{2}, \cdots, s_{m} \geq s_{k}$. Now since $k>m, 2 L \geq(m+1) s_{k}$.

Now, $\frac{w(A)}{L} \leq \frac{L+\frac{s_{k}}{2}}{L}=1+\frac{s_{k}}{2 L} \leq 1+\frac{s_{k}}{(m+1) \cdot s_{k}}=1+\frac{1}{m+1}=1+\epsilon$. Hence Approx_Partition is a $(1+\epsilon)$-approximation for Partition.

Natural Vertex Cover Approximation

Here we describe Approx_Vertex_Cover_Natural, a different approximation algorithm for Vertex Cover. Start with an empty set V^{\prime}. While there are still edges left in E, pick the vertex $v \in V$ that has maximum degree and add it to V^{\prime}. Then remove v and all incident edges from E. Repeat until no more edges left in E. In the end, return V^{\prime}.

The following example shows a bad-case example for Approx_Vertex_Cover_Natural. In the example, the optimal cover will pick the k ! vertices at the top.

Approx_Vertex_Cover_Natural could possibly pick all the bottom vertices from left to right in order. Hence the cost could be $k!\cdot\left(\frac{1}{k}+\frac{1}{k-1}+\cdots+1\right) \approx k!\log k$. Which is a factor of $\log k$ worse than optimal.

Claim: Approx_Vertex_Cover_Natural is a $(\log n)$-approximation.

Proof: Let G_{k} be the graph after iteration k of the algorithm. And let n be the number of edges in the graph, i.e. $|G|=n=|E|$. With each iteration, the algorithm selects a vertex and deletes it along with all incident edges. Let $m=C_{\text {opt }}$ be the number of vertices in the optimal vertex cover for G. Then let's look at the first m iterations of the algorithm: $G_{0} \rightarrow G_{1} \rightarrow G_{2} \rightarrow \cdots \rightarrow G_{m}$.

Let d_{i} be the degree of the maximum degree vertex of G_{i-1}. Then the algorithm deletes all edges incident on that vertex to get G_{i}. Therefore:

$$
\left|G_{m}\right|=\left|G_{0}\right|-\sum_{i=1}^{m} d_{i}
$$

Also:

$$
\sum_{i=1}^{m} d_{i} \geq \sum_{i=1}^{m} \frac{\left|G_{i-1}\right|}{m}
$$

This is true because given $\left|G_{i-1}\right|$ edges that can be covered by m vertices, we know that there is a vertex with degree at least $\frac{\left|G_{i-1}\right|}{m}$. Then:

$$
\sum_{i=1}^{m} \frac{\left|G_{i-1}\right|}{m} \geq \sum_{i=1}^{m} \frac{\left|G_{m}\right|}{m}=\left|G_{m}\right|
$$

This is true since $\left|G_{i}\right| \leq\left|G_{i-1}\right|$ for all i. Then, it follows:

$$
\left|G_{0}\right|-\left|G_{m}\right| \geq\left|G_{m}\right|
$$

Because $\left|G_{m}\right| \leq \sum_{i=1}^{m} d_{i}$. Hence after m iterations, the algorithm will have deleted half or more edges from G_{0}. And generally, since every m iterations it will halve the number of edges in the graph, in $m \cdot \log \left|G_{0}\right|$ iterations, it will have deleted all the edges. And since with each iteration it addes 1 vertex to the cover, it will end up with a vertex cover of size $m \cdot \log \left|G_{0}\right|=m \cdot \log n$. Since we assumed that m was the size of the optimal vertex cover, $\frac{C}{C_{\text {opt }}}=\frac{m \log n}{m}=\log n$. Hence Approx_Vertex_Cover_Natural is a $(\log n)$-approximation.

Note that since $n \approx k!\log k$ in the example of Figure, the worst-case example is $\log k \approx \log \log n$ worse, but we have only shown an $O(\log n)$ approximation.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

