

Distributed Algorithms

6.046J, Spring, 2015

Part 2

Nancy Lynch

1

This Week
• Synchronous distributed algorithms:

– Leader Election
– Maximal Independent Set
– Breadth-First Spanning Trees
– Shortest Paths Trees (started)

– Shortest Paths Trees (finish)

• Asynchronous distributed algorithms:

– Breadth-First Spanning Trees
– Shortest Paths Trees

2

Distributed Networks
•	 Based on undirected graph G = (V, E).

–	 n = V

–	 r(u), set of neighbors of vertex u.
– deg u = |r u |, number of neighbors of vertex u.

•	 Associate a process with each graph vertex.
•	 Associate two directed communication channels

with each edge.

3

Synchronous Distributed

Algorithms

4

Synchronous Network Model

•	 Processes at graph vertices, communicate using messages.

•	 Each process has output ports, input ports that connect to

communication channels.

•	 Algorithm executes in synchronous rounds.
•	 In each round:

–	 Each process sends messages on its ports.
–	 Each message gets put into the channel, delivered to the process

at the other end.
–	 Each process computes a new state based on the arriving

messages.

5

Leader Election

6

n-vertex Clique

•	 Theorem: There is no algorithm
consisting of deterministic,
indistinguishable processes that is
guaranteed to elect a leader in G.

• Theorem: There is an algorithm consisting of deterministic

processes with UIDs that is guaranteed to elect a leader.

–	 1 round, n2 messages.

•	 Theorem: There is an algorithm consisting of randomized,
indistinguishable processes that eventually elects a leader,
with probability 1.

1–	 Expected time < .
1-€

–	 With probability > 1 - E, finishes in one round.

7

Maximal Independent Set (MIS)

8

MIS

•	 Independent: No two neighbors are both in the set.
•	 Maximal: We can’t add any more nodes without violating

independence.
•	 Every node is either in S or has a neighbor in S.
•	 Assume:

–	 No UIDs
–	 Processes know a good upper bound on n.

•	 Require:
–	 Compute an MIS S of the network graph.
–	 Each process in S should output in, others output out.

9

Luby’s Algorithm

• Initially all nodes are active.
•	 At each phase, some active nodes decide to be in, others decide to be

out, the rest continue to the next phase.

• Behavior of active node at a phase:
•	 Round 1:

– Choose a random value r in 1,2, … , n5 , send it to all neighbors.
– Receive values from all active neighbors.
– If r is strictly greater than all received values, then join the MIS, output in.

•	 Round 2:
– If you joined the MIS, announce it in messages to all (active) neighbors.
– If you receive such an announcement, decide not to join the MIS, output out.

– If you decided one way or the other at this phase, become inactive.

10

Luby’s Algorithm

• Theorem: If Luby’s algorithm ever terminates,

then the final set S is an MIS.

• Theorem: With probability at least 1 - 1

�
,all

nodes decide within 4 log n phases.

11

Breadth-First Spanning Trees

12

Breadth-First Spanning Trees
•	 Distinguished vertex va.
•	 Processes must produce a Breadth-First

Spanning Tree rooted at vertex va.
•	 Assume:

–	 UIDs.
–	 Processes have no knowledge about the graph.

•	 Output: Each process i = ia should output
parent j .

13

Simple BFS Algorithm

� Processes mark themselves as they get incorporated into the tree.

� Initially, only i

0
 is marked.

� Algorithm for process i:
� Round 1:

� If i = i
0
 then process i sends a search message to its neighbors.

� If process i receives a message, then it:
� Marks itself.
� Selects i

0
as its parent, outputs parent i

� Plans to send at the next round.
� Round r > 1:

� If process i planned to send, then it sends a search message to its
neighbors.

� If process i is not marked and receives a message, then it:
� Marks itself.
� Selects one sending neighbor, j, as its parent, outputs parent j .
� Plans to send at the next round.

a .

14

Correctness

� State variables, per process:

� a,marked, a Boolean, initially true for i false for others

� parent, a UID or undefined
� a,send, a Boolean, initially true for i false for others
� uid

� Invariants:
– At the end of r rounds, exactly the processes at distance < r

from v are marked. a

– A process = i has its parent defined iff it is marked. a

– For any process at distance d from va, if its parent is defined,
then it is the UID of a process at distance d - 1 from v .a

15

Complexity

� Time complexity:

� Number of rounds until all nodes outputs their parent
information.

� Maximum distance of any node from va, which is < diam

� Message complexity:
� Number of messages sent by all processes during the entire

execution.
� O(E)

16

Bells and Whistles

• Child pointers:
– Send parent/nonparent responses to search

messages.
• Distances:

– Piggyback distances on search messages.

• Termination:

– Convergecast starting from the leaves.
• Applications:

– Message broadcast from the root
– Global computation

17

Shortest Paths Trees

1

1

1

1

1

1

1

1

16
12

14 3

4

5

6

18

Shortest Paths

•	 Generalize the BFS problem to allow weights on the graph

edges, weight u,v for edge {u, v}
• Connected graph G = V, E , root vertex v , process ia	 a.

•	 Processes have UIDs.

•	 Processes know their
neighbors and the
weights of their incident
edges, but otherwise
have no knowledge
about the graph.

1

1

1

1

1

1

1

1

16
12

14 3

4

5

6

19

Shortest Paths

•	 Processes must produce a Shortest-Paths Spanning

Tree rooted at vertex va.
•	 Branches are directed paths from va.

–	 Spanning: Branches reach all vertices.
– Shortest paths: The total weight of the tree branch to

each node is the minimum total weight for any path from
v in G.a

• Output: Each process i = i should outputa
parent j , distance(d), meaning that:
–	 j’s vertex is the parent of i’s vertex on a shortest path

from v ,a
– d is the total weight of a shortest path from v to j.a

20

Bellman-Ford Shortest Paths Algorithm

� State variables:

� dist, a nonnegative real or 0, representing the shortest known
distance from v . Initially 0 for process i , 0 for the others. a a

� parent, a UID or undefined, initially undefined.
� uid

� Algorithm for process i:
� At each round:

� Send a distance(dist) message to all neighbors.

� Receive messages from neighbors; let dj be the distance

received from neighbor j.
� Perform a relaxation step:
dist : min (dist, min(dj + weight i,j) .

j

� If dist decreases then set parent : j, where j is any
neighbor that produced the new dist.

21

Correctness

� Claim: Eventually, every process i has:

� dist = minimum weight of a path from i to i, anda

� if i = ia, parent = the previous node on some shortest path
from i to i.a

� Key invariant:
– For every r, at the end of r rounds, every process i = i has itsa

dist and parent corresponding to a shortest path from i to ia

among those paths that consist of at most r edges; if there is
no such path, then dist = 0 and parent is undefined.

22

Complexity

� Time complexity:

� Number of rounds until all the variables stabilize to their final
values.

� n - 1 rounds
� Message complexity:

� Number of messages sent by all processes during the entire
execution.

� O(n · E)

� More expensive than BFS:
� diam rounds,
� O E messages

� Q: Does the time bound really depend on n?

23

Child Pointers

•	 Ignore repeated messages.
•	 When process i receives a message that it does not use

to improve dist, it responds with a nonparent message.
•	 When process i receives a message that it uses to

improve dist, it responds with a parent message, and
also responds to any previous parent with a nonparent
message.

•	 Process i records nodes from which it receives parent
messages in a set children.

•	 When process i receives a nonparent message from a
current child, it removes the sender from its children.

•	 When process i improves dist, it empties children.

24

Termination

•	 Q: How can the processes learn when the shortest-

paths tree is completed?
•	 Q: How can a process even know when it can output

its own parent and distance?

•	 If processes knew an upper bound on n, then they
could simply wait until that number of rounds have
passed.

•	 But what if they don’t know anything about the
graph?

•	 Recall termination for BFS: Used convergecast.
•	 Q: Does that work here?

25

Termination

•	 Q: How can the processes learn when the shortest-

paths tree is completed?
•	 Q: Does convergecast work here?
•	 Yes, but it’s trickier, since the tree structure changes.

•	 Key ideas:
– A process = i can send a done message to its current
a

parent after:
•	 It has received responses to all its distance messages, so it

believes it knows who its children are, and
•	 It has received done messages from all of those children.

– The same process may be involved several times in the
convergecast, based on improved estimates.

26

100

Termination

100

100

1

1
1 1

1

11

ia
0

1

100

1

1
1 1

1

11

ia

100

1

100

100 0

1

100

100

1

1
1 1

1

11

ia

1

1

51

50

1

505

leaf leaf

27

Asynchronous Distributed

Algorithms

28

Asynchronous Network Model
• Complications so far:

– Processes act concurrently.
– A little nondeterminism.

• Now things get much worse:
–	 No rounds---process steps and message deliveries happen at

arbitrary times, in arbitrary orders.
– Processes get out of synch.
– Much more nondeterminism.

•	 Understanding asynchronous distributed
algorithms is hard because we can’t
understand exactly how they execute.

•	 Instead, we must understand abstract
properties of executions.

29

Aynchronous Network Model

•	 Lynch, Distributed Algorithms, Chapter 8.
•	 Processes at nodes of an undirected graph
G = (V, E), communicate using messages.

•	 Communication channels associated with
edges (one in each direction on each edge).
–	 eu,v, channel from vertex u to vertex v.

•	 Each process has output ports and input
ports that connect it to its communication
channels.

•	 Processes need not be distinguishable.

30

Channel Automaton eu,v

• Formally, an input/output automaton.

• Input actions: send m u,v
• Output actions: receive m u,v
• State variable:

– mqueue, a FIFO queue, initially empty.

• Transitions:

– send m u,v
• Effect: add m to mqueue.

– receive m u,v
• Precondition: m = head(mqueue)

• Effect: remove head of mqueue

eu,v
send m u,v receive m u,v

31

Process Automaton Pu
•	 Associate a process automaton with

each vertex of G.
•	 To simplify notation, let P denote u

the process automaton at vertex u.
–	 But the process does not “know” u.

• P has send m outputs andu u,v
receive m inputs.v,u

•	 May also have external inputs and
send m u,v receive

Pu

m v,u outputs.
•	 Has state variables.
•	 Keeps taking steps (eventually).

32

Example: Max Process Automaton u

• Input actions: receive m v,u
• Output actions: send m u,v
• State variables:

– max, a natural number, initially xu
– For each neighbor v:

• send(v), a Boolean, initially true

• Transitions:
– receive m v,u

• Effect: if m > max then
– max := m

send m u,v receive

Maxu

m v,u – for every w, send(w) := true

– send m u,v
• Precondition: send(v) = true and m = max
• Effect: send(v) := false

33

Combining Processes and Channels

•	 Undirected graph G =
•	 Process P at each vertex u.u

•	 Channels e and ev,u, associated with each edge u,v

• send m output of process P gets identified with u,v	 u

send m input of channel e .u,v	 u,v

• receive m output of channel e gets identified with
v,u	 v,u

receive m input of process P .v,u	 u

•	 Steps involving such a shared action
involve simultaneous state transitions
for a process and a channel.

V, E .

u, v .

34

Execution
• No synchronous rounds anymore.
•	 The system executes by performing enabled steps, one

at a time, in any order.
•	 Formally, an execution is modeled as a sequence of

individual steps.
• Different from the synchronous model, in which all

processes take steps concurrently at each round.

•	 Assume enabled steps eventually
occur:
– Each channel always eventually

delivers the first message in its queue.

– Each process always eventually

performs some enabled step.

35

Combining Max Processes and Channels

•	 Each process Max starts with an initial value xu	 u.

•	 They all send out their initial values, and propagate their max
values, until everyone has the globally-maximum value.

•	 Sending and receiving steps can happen in many different

orders, but in all cases the global max will eventually arrive

everywhere.

36

 Max System

5

3

4

10

7

37

 Max System

5

3

4

10

7

5

38

 Max System

5

3

4

10

7

5

7

39

 Max System

5

5

4

10

7

7

10
7

40

 Max System

10

5

4

10

7

7

10

7

10

41

 Max System

10

5

7

10

7
10

10

42

 Max System

10

10

7

10

10

43

 Max System

10

10

7

10

10

7

7
10

44

 Max System

10

10

10

10

10

45

Complexity

� Message complexity:

� Number of messages sent by all processes during the entire
execution.

� O(n · E)

� Time complexity:
� Q: What should we measure?
� Not obvious, because the various components are taking

steps in arbitrary orders---no “rounds”.
� A common approach:

� Assume real-time upper bounds on the time to perform basic steps:
� d for a channel to deliver the next message, and

� l for a process to perform its next step.

� Infer a real-time upper bound for solving the overall problem.

46

Complexity

� Time complexity:

� Assume real-time upper bounds on the time to perform basic
steps:
� d for a channel to deliver the next message, and
� l for a process to perform its next step.

� Infer a real-time upper bound for solving the problem.

� For the Max system:
� Ignore local processing time (l = 0), consider only channel

sending time.
� Straightforward upper bound: O(diam · n · d)

� Consider the time for the max to reach any particular vertex u, along a
shortest path in the graph.

� At worst, it waits in each channel on the path for every other value,
which is at most time n · d for that channel.

47

Breadth-First Spanning Trees

48

Breadth-First Spanning Trees

•	 Problem: Compute a Breadth-First Spanning Tree in an

asynchronous network.
• Connected graph G = (V, E).
• Distinguished root vertex v .a
• Processes have no knowledge about the graph.
• Processes have UIDs

– i is the UID of the root v .a	 a

– Processes know UIDs of their neighbors, and know which
ports are connected to each neighbor.

• Processes must produce a BFS tree rooted at va.
• Each process i = i should output parent j , meaninga

that j’s vertex is the parent of i’s vertex in the BFS tree.

49

First Attempt

•	 Just run the simple synchronous BFS algorithm

asynchronously.
•	 Process i sends search messages, which everyone
a

propagates the first time they receive it.
•	 Everyone picks the first node from which it receives a
search message as its parent.

•	 Nondeterminism:
–	 No longer any nondeterminism in process decisions.

– But plenty of new nondeterminism: orders of message

deliveries and process steps.

50

Process Automaton P
u
• Input actions: receive search v,u
• Output actions: send search ; parent vu,v u

• State variables:
– parent: r u u { 1}, initially 1
– reported: Boolean, initially false
– For every v E r u :

• send v E {search, 1}, initially search if u = v , else 1a

• Transitions:
–

• Effect: if u = v and parent = 1 thena

– parent := v
– for every w, send(w) := search

receive search v,u

51

Process Automaton Pu
• Transitions:

–

• Effect: if u = v and parent = 1 thena

– parent := v

– for every w, send(w) := search

–

• Precondition: send(v) = search
• Effect: send(v) :1

– parent v u
• Precondition: parent = v and reported = false

• Effect: reported : true

receive search v,u

send search u,v

52

Running Simple BFS Asynchronously

53

54

s

s
s s

55

s

s
s

s

56

s

s

s s

s

s

57

s

s

s

s s

s

s
s

s

s

s
s

58

s

s

s

s

s
s

59

s
s

s

s

ss

s
s

s

s

s

60

Final Spanning Tree

61

Actual BFS

62

Anomaly

•	 Paths produced by the algorithm may be

longer than the shortest paths.
•	 Because in asynchronous networks, messages

may propagate faster along longer paths.

63

Complexity

� Message complexity:

� Number of messages sent by all processes during the entire
execution.

� O(E)

� Time complexity:
� Time until all processes have chosen their parents.
� Neglect local processing time.
� O(diam · d)

� Q: Why diam, when some of the paths are longer?
� The time until a node receives a search message is at most

the time it would take on a shortest path.

64

Extensions

• Child pointers:

– As for synchronous BFS.
– Everyone who receives a search message sends back a
parent or nonparent response.

• Termination:
– After a node has received responses to all its search its

messages, it knows who its children are, and knows they
are marked.

– The leaves of the tree learn who they are.
– Use a convergecast strategy, as before.
– Time complexity: After the tree is done, it takes time
O(n · d) for the done information to reach ia.

– Message complexity: O(n)

65

Applications

� Message broadcast:
- Process i can use the tree (with child pointers) to
 a

broadcast a message.

- Takes O(n · d) time and n messages.

� Global computation:
- Suppose every process starts with some initial value,

and process i should determine the value of some
a

function of the set of all processes’ values.

- Use convergecast on the tree.

- Takes O(n · d) time and n messages.

66

Second Attempt

•	 A relaxation algorithm, like synchronous Bellman-Ford.

•	 Before, we corrected for paths with many hops but low

weights.
•	 Now, instead, correct for errors caused by asynchrony.

•	 Strategy:

– Each process keeps track of the hop distance, changes its
parent when it learns of a shorter path, and propagates
the improved distances.

–	 Eventually stabilizes to a breadth-first spanning tree.

67

Process Automaton P
u

0 , initially 0 if u =
For every v E r u :

v

• Input actions: receive m , m a nonnegative integer v,u

• Output actions: send m , m a nonnegative integer u,v

• State variables:
– parent: r u u { 1}, initially 1
– dist E N u v , 0 otherwise a

–
• send , a FIFO queue of N, initially (0) if u = v , else empty a

• Transitions:
– receive m v,u

• Effect: if m+ 1 < dist then
– dist := m + 1

– parent := v
– for every w, add dist to send(w)

68

Process Automaton Pu
• Transitions:

– receive m v,u
• Effect: if m + 1 < dist then

– dist := m + 1

– parent := v

– for every w, add m + 1 to send w

– send m u,v

• Precondition: m = head(send v)
• Effect: remove head of send(v)

• No terminating actions…

69

Correctness

•	 For synchronous BFS, we characterized precisely the

situation after r rounds.
•	 We can’t do that now.
•	 Instead, state abstract properties, e.g., invariants and

timing properties, e.g.:
•	 Invariant: At any point, for any node u = v , if itsa

dist = 0, then it is the actual distance on some path

from v to u, and its parent is u’s predecessor on such
a

a path.
•	 Timing property: For any node u, and any r,
0 < r < diam, if there is an at-most-r-hop path from
v to u, then by time r · n · d, node u’s dist is < r. a

70

Complexity

� Message complexity:

� Number of messages sent by all processes during the
entire execution.

� O(n E)

� Time complexity:
� Time until all processes’ dist and parent values have

stabilized.
� Neglect local processing time.
� O diam · n · d

� Time until each node receives a message along a shortest path,
counting time O(n · d) to traverse each link.

71

Termination

•	 Q: How can processes learn when the tree is completed?
•	 Q: How can a process know when it can output its own
dist and parent?

•	 Knowing a bound on n doesn’t help here: can’t use it to
count rounds.

•	 Can use convergecast, as for synchronous Bellman-Ford:
–	 Compute and recompute child pointers.
–	 Process = v sends done to its current parent after: a

•	 It has received responses to all its messages, so it believes it knows all its
children, and

•	 It has received done messages from all of those children.
–	 The same process may be involved several times, based on

improved estimates.

72

Uses of Breadth-First Spanning Trees

•	 Same as in synchronous networks, e.g.:
–	 Broadcast a sequence of messages
–	 Global function computation

•	 Similar costs, but now count time d instead of
one round.

73

Shortest Paths Trees

1

1

1

1

1

1

1

1

16
12

14 3

4

5

6

74

Shortest Paths

•	 Problem: Compute a Shortest Paths Spanning Tree in an

asynchronous network.
• Connected weighted graph, root vertex v .a
• weight u,v for edge u, v .

•	 Processes have no knowledge about the graph, except for

weights of incident edges.
• UIDs

•	 Processes must produce a Shortest Paths spanning tree
rooted at va.

• Each process u = v should output its distance and parent
 a
in the tree.

75

Shortest Paths

•	 Use a relaxation algorithm, once again.
•	 Asynchronous Bellman-Ford.

•	 Now, it handles two kinds of corrections:
– Because of long, small-weight paths (as in synchronous

Bellman-Ford).
– Because of asynchrony (as in asynchronous Breadth-First

search).
•	 The combination leads to surprisingly high message

and time complexity, much worse than either type of
correction alone (exponential).

76

Asynch Bellman-Ford, Process P
u

0 , initially 0 if u =
For every v E r u :

v

• Input actions: receive m , m a nonnegative integer v,u

• Output actions: send m , m a nonnegative integer u,v

• State variables:
– parent: r u u { 1}, initially 1
– dist E N u v , 0 otherwise a

–
• send , a FIFO queue of N, initially (0) if u = v , else empty a

• Transitions:
– receive m v,u

• Effect: if m+ weight v,u < dist then
– dist := m + weight v,u

– parent := v
– for every w, add dist to send(w)

77

Asynch Bellman-Ford, Process P
u
• Transitions:

– receive m v,u
• Effect: if m+ weight v,u < dist then

– dist := m + weight v,u

– parent := v
– for every w, add dist to send(w)

– send m u,v
• Precondition: m = head(send v)
• Effect: remove head of send(v)

• No terminating actions…

78

Correctness:

Invariants and Timing Properties

•	 Invariant: At any point, for any node u = v , if itsa
dist = 0, then it is the actual distance on some path from
v to u, and its parent is u’s predecessor on such a path. a

•	 Timing property: For any node u, and any r, 0 < r <
diam, if p is any at-most-r-hop path from v to u, then by a
time ???, node u’s dist is < total weight of p.

•	 Q: What is ??? ?
•	 It depends on how many messages might pile up in a

channel.
•	 This can be a lot!

79

�

Complexity

� O(n!) simple paths from v0 to any other node u, which

is O(nn).
� So the number of messages sent on any channel is O nn .
� nMessage complexity: O E .

� Time complexity: O(nn · n · d).

� Q: Are such exponential bounds really achievable?

21 200

0 0
v -1 v

0
v
1

0

0

2k-1

v v v �1
20

2k-2

k

0

80

Complexity

� Q: Are such exponential bounds really achievable?

� Example:

There is an execution of the network below in which node v�

sends 2k � 2n/2 messages to node vk+1.
k

� Message complexity is O(2n/2).
� Time complexity is O(2n/2 d).

v -1 v
0

v
1

0

0

2k-1

v
20

2k-2 21

v
k

0

0

20

0

0

v �1

81

Complexity
• Execution in which node v

k
 sends 2k messages to node vk+1.

•	 Possible distance estimates for vk are 2k – 1, 2k – 2,… , 0.

•	 Moreover, vk can take on all these estimates in sequence:
–	 First, messages traverse upper links, 2k – 1.
–	 Then last lower message arrives at v , 2k – 2.
–	 Then lower message vk-2 � vk-1 arrives, reduces vk-1’s estimate by 2,

message vk-1 � vk arrives on upper links, 2k – 3.
–	 Etc. Count down in binary.
–	 If this happens quickly, get pileup of 2k search messages in e , �1.

v -1v
0

v
1

0

0

2k-1

v
20

2k-2 21

v
k

0

0

20

0

0

v �1

82

𝑘

𝑘

Termination

•	 Q: How can processes learn when the tree is

completed?
•	 Q: How can a process know when it can output its own
dist and parent?

•	 Convergecast, once again
–	 Compute and recompute child pointers.
–	 Process = v sends done to its current parent after: a

•	 It has received responses to all its messages, so it believes it knows
all its children, and

•	 It has received done messages from all of those children.
– The same process may be involved several (many) times,

based on improved estimates.

83

Shortest Paths

•	 Moral: Unrestrained asynchrony can cause
problems.

•	 What to do?

•	 Find out in 6.852/18.437, Distributed
Algorithms!

84

What’s Next?

•	 6.852/18.437 Distributed Algorithms
•	 Basic grad course
•	 Covers synchronous, asynchronous,

and timing-based algorithms

•	 Synchronous algorithms:
–	 Leader election
–	 Building various kinds of spanning trees
–	 Maximal Independent Sets and other network structures
–	 Fault tolerance
–	 Fault-tolerant consensus, commit, and related problems

85

Asynchronous Algorithms

• Asynchronous network model
• Leader election, network structures.
• Algorithm design techniques:

– Synchronizers
– Logical time
– Global snapshots, stable property detection.

• Asynchronous shared-memory model
• Mutual exclusion, resource allocation

• Fault tolerance
• Fault-tolerant consensus and related problems

• Atomic data objects, atomic snapshots
• Transformations between models.
• Self-stabilizing algorithms

p1

p2

pn

x1

x2

86

And More
• Timing-based algorithms

– Models
– Revisit some problems
– New problems, like clock synchronization.

• Newer work (maybe):
– Dynamic network algorithms
– Wireless networks
– Insect colony algorithms and other biological distributed

algorithms

87

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

