Distributed Algorithms 6.046J, Spring, 2015 Part 2

Nancy Lynch

This Week

- Synchronous distributed algorithms:
 - Leader Election
 - Maximal Independent Set
 - Breadth-First Spanning Trees
 - Shortest Paths Trees (started)
 - Shortest Paths Trees (finish)
- Asynchronous distributed algorithms:
 - Breadth-First Spanning Trees
 - Shortest Paths Trees

Distributed Networks

- Based on undirected graph G = (V, E).
 - -n = |V|
 - $-\Gamma(u)$, set of neighbors of vertex u.
 - $\deg(u) = |\Gamma(u)|$, number of neighbors of vertex u.
- Associate a process with each graph vertex.
- Associate two directed communication channels with each edge.

Synchronous Distributed Algorithms

Synchronous Network Model

- Processes at graph vertices, communicate using messages.
- Each process has output ports, input ports that connect to communication channels.
- Algorithm executes in synchronous rounds.
- In each round:
 - Each process sends messages on its ports.
 - Each message gets put into the channel, delivered to the process at the other end.
 - Each process computes a new state based on the arriving messages.

Leader Election

n-vertex Clique

• Theorem: There is no algorithm consisting of deterministic, indistinguishable processes that is guaranteed to elect a leader in *G*.

- Theorem: There is an algorithm consisting of deterministic processes with UIDs that is guaranteed to elect a leader.
 1 round, n² messages.
- Theorem: There is an algorithm consisting of randomized, indistinguishable processes that eventually elects a leader, with probability 1.
 - Expected time $\leq \frac{1}{1-\epsilon}$.
 - With probability $\geq 1 \epsilon$, finishes in one round.

Maximal Independent Set (MIS)

MIS

- Independent: No two neighbors are both in the set.
- Maximal: We can't add any more nodes without violating independence.
- Every node is either in *S* or has a neighbor in *S*.
- Assume:
 - No UIDs
 - Processes know a good upper bound on n.
- Require:
 - Compute an MIS S of the network graph.
 - Each process in S should output in, others output out.

Luby's Algorithm

- Initially all nodes are active.
- At each phase, some active nodes decide to be in, others decide to be out, the rest continue to the next phase.
- Behavior of active node at a phase:
- Round 1:
 - Choose a random value r in $\{1, 2, ..., n^5\}$, send it to all neighbors.
 - Receive values from all active neighbors.
 - If r is strictly greater than all received values, then join the MIS, output in.
- Round 2:
 - If you joined the MIS, announce it in messages to all (active) neighbors.
 - If you receive such an announcement, decide not to join the MIS, output out.
 - If you decided one way or the other at this phase, become inactive.

Luby's Algorithm

- Theorem: If Luby's algorithm ever terminates, then the final set *S* is an MIS.
- Theorem: With probability at least $1 \frac{1}{n}$, all nodes decide within $4 \log n$ phases.

Breadth-First Spanning Trees

Breadth-First Spanning Trees

- Distinguished vertex v_0 .
- Processes must produce a Breadth-First Spanning Tree rooted at vertex v_0 .
- Assume:
 - UIDs.
 - Processes have no knowledge about the graph.
- Output: Each process i ≠ i₀ should output parent(j).

Simple BFS Algorithm

- Processes mark themselves as they get incorporated into the tree.
- Initially, only i_0 is marked.
- Algorithm for process *i*:
 - Round 1:
 - If $i = i_0$ then process *i* sends a *search* message to its neighbors.
 - If process *i* receives a message, then it:
 - Marks itself.
 - Selects i_0 as its parent, outputs $parent(i_0)$.
 - Plans to send at the next round.
 - Round r > 1:
 - If process *i* planned to send, then it sends a *search* message to its neighbors.
 - If process *i* is not marked and receives a message, then it:
 - Marks itself.
 - Selects one sending neighbor, *j*, as its parent, outputs *parent(j)*.
 - Plans to send at the next round.

Correctness

- State variables, per process:
 - marked, a Boolean, initially true for i_0 , false for others
 - *parent*, a UID or undefined
 - *send*, a Boolean, initially true for i_0 , false for others
 - uid
- Invariants:
 - At the end of r rounds, exactly the processes at distance $\leq r$ from v_0 are marked.
 - A process $\neq i_0$ has its *parent* defined iff it is marked.
 - For any process at distance d from v_0 , if its *parent* is defined, then it is the UID of a process at distance d 1 from v_0 .

Complexity

- Time complexity:
 - Number of rounds until all nodes outputs their parent information.
 - Maximum distance of any node from v_0 , which is $\leq diam$
- Message complexity:
 - Number of messages sent by all processes during the entire execution.
 - O(|E|)

Bells and Whistles

- Child pointers:
 - Send parent/nonparent responses to search messages.
- Distances:
 - Piggyback distances on *search* messages.
- Termination:
 - Convergecast starting from the leaves.
- Applications:
 - Message broadcast from the root
 - Global computation

Shortest Paths Trees

Shortest Paths

- Generalize the BFS problem to allow weights on the graph edges, weight_{u,v} for edge {u, v}
- Connected graph G = (V, E), root vertex v_0 , process i_0 .
- Processes have UIDs.
- Processes know their neighbors and the weights of their incident edges, but otherwise have no knowledge about the graph.

Shortest Paths

- Processes must produce a Shortest-Paths Spanning Tree rooted at vertex v_0 .
- Branches are directed paths from v_0 .
 - Spanning: Branches reach all vertices.
 - Shortest paths: The total weight of the tree branch to each node is the minimum total weight for any path from v_0 in G.
- Output: Each process i ≠ i₀ should output parent(j), distance(d), meaning that:
 - j's vertex is the parent of i's vertex on a shortest path from v_0 ,
 - -d is the total weight of a shortest path from v_0 to j.

Bellman-Ford Shortest Paths Algorithm

• State variables:

- *dist*, a nonnegative real or ∞ , representing the shortest known distance from v_0 . Initially 0 for process i_0, ∞ for the others.
- *parent*, a UID or undefined, initially undefined.
- uid

• Algorithm for process *i*:

- At each round:
 - Send a *distance(dist)* message to all neighbors.
 - Receive messages from neighbors; let d_j be the distance received from neighbor j.
 - Perform a relaxation step: $dist \coloneqq \min(dist, \min_{i}(d_{j} + weight_{\{i,j\}}))$.
 - If *dist* decreases then set *parent* ≔ *j*, where *j* is any neighbor that produced the new *dist*.

Correctness

- Claim: Eventually, every process *i* has:
 - dist = minimum weight of a path from i_0 to i, and
 - if $i \neq i_0$, *parent* = the previous node on some shortest path from i_0 to i.
- Key invariant:
 - For every r, at the end of r rounds, every process $i \neq i_0$ has its *dist* and *parent* corresponding to a shortest path from i_0 to iamong those paths that consist of at most r edges; if there is no such path, then *dist* = ∞ and *parent* is undefined.

Complexity

- Time complexity:
 - Number of rounds until all the variables stabilize to their final values.
 - *n* − 1 rounds
- Message complexity:
 - Number of messages sent by all processes during the entire execution.
 - $O(n \cdot |E|)$
- More expensive than BFS:
 - *diam* rounds,
 - O(|E|) messages
- Q: Does the time bound really depend on *n*?

Child Pointers

- Ignore repeated messages.
- When process *i* receives a message that it does not use to improve *dist*, it responds with a *nonparent* message.
- When process *i* receives a message that it uses to improve *dist*, it responds with a *parent* message, and also responds to any previous parent with a *nonparent* message.
- Process *i* records nodes from which it receives *parent* messages in a set *children*.
- When process *i* receives a *nonparent* message from a current child, it removes the sender from its *children*.
- When process *i* improves *dist*, it empties *children*.

Termination

- Q: How can the processes learn when the shortestpaths tree is completed?
- Q: How can a process even know when it can output its own *parent* and *distance*?
- If processes knew an upper bound on n, then they could simply wait until that number of rounds have passed.
- But what if they don't know anything about the graph?
- Recall termination for BFS: Used convergecast.
- Q: Does that work here?

Termination

- Q: How can the processes learn when the shortestpaths tree is completed?
- Q: Does convergecast work here?
- Yes, but it's trickier, since the tree structure changes.
- Key ideas:
 - A process $\neq i_0$ can send a *done* message to its current parent after:
 - It has received responses to all its *distance* messages, so it believes it knows who its children are, and
 - It has received *done* messages from all of those children.
 - The same process may be involved several times in the convergecast, based on improved estimates.

Termination

Asynchronous Distributed Algorithms

Asynchronous Network Model

- Complications so far:
 - Processes act concurrently.
 - A little nondeterminism.
- Now things get much worse:
 - No rounds---process steps and message deliveries happen at arbitrary times, in arbitrary orders.
 - Processes get out of synch.
 - Much more nondeterminism.
- Understanding asynchronous distributed algorithms is hard because we can't understand exactly how they execute.
- Instead, we must understand abstract properties of executions.

Aynchronous Network Model

- Lynch, Distributed Algorithms, Chapter 8.
- Processes at nodes of an undirected graph G = (V, E), communicate using messages.
- Communication channels associated with edges (one in each direction on each edge).

- $C_{u,v}$, channel from vertex u to vertex v.

- Each process has output ports and input ports that connect it to its communication channels.
- Processes need not be distinguishable.

Channel Automaton $C_{u,v}$

- Formally, an input/output automaton.
- Input actions: $send(m)_{u,v}$
- Output actions: $receive(m)_{u,v}$
- State variable:
 - mqueue, a FIFO queue, initially empty.
- Transitions:
 - $send(m)_{u,v}$
 - Effect: add *m* to *mqueue*.
 - $receive(m)_{u,v}$
 - Precondition: *m* = head(*mqueue*)
 - Effect: remove head of *mqueue*

Process Automaton P_u

- Associate a process automaton with each vertex of *G*.
- To simplify notation, let P_u denote the process automaton at vertex u.

- But the process does not "know" u.

- P_u has $send(m)_{u,v}$ outputs and $receive(m)_{v,u}$ inputs.
- May also have external inputs and outputs.
- Has state variables.
- Keeps taking steps (eventually).

Example: Max_u Process Automaton

- Input actions: $receive(m)_{v,u}$
- Output actions: $send(m)_{u,v}$
- State variables:
 - max, a natural number, initially x_u
 - For each neighbor v:
 - *send(v)*, a Boolean, initially *true*
- Transitions:
 - $receive(m)_{v,u}$
 - Effect: if m > max then
 - -max := m
 - for every w, send(w) := true
 - send $(m)_{u,v}$
 - Precondition: send(v) = true and m = max
 - Effect: send(v) := false

Combining Processes and Channels

- Undirected graph G = (V, E).
- Process P_u at each vertex u.
- Channels $C_{u,v}$ and $C_{v,u}$, associated with each edge $\{u, v\}$.
- $send(m)_{u,v}$ output of process P_u gets identified with $send(m)_{u,v}$ input of channel $C_{u,v}$.
- $receive(m)_{v,u}$ output of channel $C_{v,u}$ gets identified with $receive(m)_{v,u}$ input of process P_u .
- Steps involving such a shared action involve simultaneous state transitions for a process and a channel.

Execution

- No synchronous rounds anymore.
- The system executes by performing enabled steps, one at a time, in any order.
- Formally, an execution is modeled as a sequence of individual steps.
- Different from the synchronous model, in which all processes take steps concurrently at each round.
- Assume enabled steps eventually occur:
 - Each channel always eventually delivers the first message in its queue.
 - Each process always eventually performs some enabled step.

Combining Max Processes and Channels

- Each process Max_u starts with an initial value x_u .
- They all send out their initial values, and propagate their *max* values, until everyone has the globally-maximum value.
- Sending and receiving steps can happen in many different orders, but in all cases the global max will eventually arrive everywhere.

Complexity

- Message complexity:
 - Number of messages sent by all processes during the entire execution.
 - $O(n \cdot |E|)$
- Time complexity:
 - Q: What should we measure?
 - Not obvious, because the various components are taking steps in arbitrary orders---no "rounds".
 - A common approach:
 - Assume real-time upper bounds on the time to perform basic steps:
 - *d* for a channel to deliver the next message, and
 - *l* for a process to perform its next step.
 - Infer a real-time upper bound for solving the overall problem.

Complexity

- Time complexity:
 - Assume real-time upper bounds on the time to perform basic steps:
 - *d* for a channel to deliver the next message, and
 - *l* for a process to perform its next step.
 - Infer a real-time upper bound for solving the problem.
- For the *Max* system:
 - Ignore local processing time (l = 0), consider only channel sending time.
 - Straightforward upper bound: $O(diam \cdot n \cdot d)$
 - Consider the time for the max to reach any particular vertex *u*, along a shortest path in the graph.
 - At worst, it waits in each channel on the path for every other value, which is at most time $n \cdot d$ for that channel.

Breadth-First Spanning Trees

Breadth-First Spanning Trees

- Problem: Compute a Breadth-First Spanning Tree in an asynchronous network.
- Connected graph G = (V, E).
- Distinguished root vertex v_0 .
- Processes have no knowledge about the graph.
- Processes have UIDs
 - $-i_0$ is the UID of the root v_0 .
 - Processes know UIDs of their neighbors, and know which ports are connected to each neighbor.
- Processes must produce a BFS tree rooted at v_0 .
- Each process $i \neq i_0$ should output parent(j), meaning that j's vertex is the parent of i's vertex in the BFS tree.

First Attempt

- Just run the simple synchronous BFS algorithm asynchronously.
- Process i₀ sends search messages, which everyone propagates the first time they receive it.
- Everyone picks the first node from which it receives a *search* message as its parent.
- Nondeterminism:
 - No longer any nondeterminism in process decisions.
 - But plenty of new nondeterminism: orders of message deliveries and process steps.

Process Automaton P_u

- Input actions: *receive*(*search*)_{*v*,*u*}
- Output actions: $send(search)_{u,v}$; $parent(v)_u$
- State variables:
 - *− parent*: $\Gamma(u) \cup \{ \bot \}$, initially \bot
 - *reported*: Boolean, initially false
 - For every $v \in \Gamma(u)$:
 - $send(v) \in \{search, \bot\}$, initially search if $u = v_0$, else \bot
- Transitions:
 - receive(search)_{v,u}
 - Effect: if $u \neq v_0$ and $parent = \bot$ then
 - -parent := v
 - for every w, send(w) := search

Process Automaton P_u

• Transitions:

- receive(search)_{v,u}
 - Effect: if $u \neq v_0$ and $parent = \bot$ then

-parent := v

- -for every w, send(w) := search
- send(search)_{u,v}
 - Precondition: send(v) = search
 - Effect: $send(v) \coloneqq \bot$
- $parent(v)_u$
 - Precondition: *parent* = *v* and *reported* = *false*
 - Effect: $reported \coloneqq true$

Running Simple BFS Asynchronously

Final Spanning Tree

Anomaly

- Paths produced by the algorithm may be longer than the shortest paths.
- Because in asynchronous networks, messages may propagate faster along longer paths.

Complexity

- Message complexity:
 - Number of messages sent by all processes during the entire execution.
 - O(|E|)
- Time complexity:
 - Time until all processes have chosen their parents.
 - Neglect local processing time.
 - $O(diam \cdot d)$
 - Q: Why *diam*, when some of the paths are longer?
 - The time until a node receives a *search* message is at most the time it would take on a shortest path.

Extensions

• Child pointers:

- As for synchronous BFS.
- Everyone who receives a *search* message sends back a *parent* or *nonparent* response.
- Termination:
 - After a node has received responses to all its *search* its messages, it knows who its children are, and knows they are marked.
 - The leaves of the tree learn who they are.
 - Use a convergecast strategy, as before.
 - Time complexity: After the tree is done, it takes time $O(n \cdot d)$ for the *done* information to reach i_0 .
 - Message complexity: O(n)

Applications

- Message broadcast:
 - Process i₀ can use the tree (with child pointers) to broadcast a message.
 - Takes $O(n \cdot d)$ time and n messages.
- Global computation:
 - Suppose every process starts with some initial value, and process i₀ should determine the value of some function of the set of all processes' values.
 - Use convergecast on the tree.
 - Takes $O(n \cdot d)$ time and n messages.

Second Attempt

- A relaxation algorithm, like synchronous Bellman-Ford.
- Before, we corrected for paths with many hops but low weights.
- Now, instead, correct for errors caused by asynchrony.
- Strategy:
 - Each process keeps track of the hop distance, changes its parent when it learns of a shorter path, and propagates the improved distances.
 - Eventually stabilizes to a breadth-first spanning tree.

Process Automaton P_u

- Input actions: $receive(m)_{v,u}$, m a nonnegative integer
- Output actions: $send(m)_{u,v}$, m a nonnegative integer
- State variables:
 - *− parent*: $\Gamma(u) \cup \{ \bot \}$, initially \bot
 - *dist* ∈ $N \cup \{\infty\}$, initially 0 if $u = v_0$, ∞ otherwise
 - For every $v \in \Gamma(u)$:
 - send(v), a FIFO queue of N, initially (0) if $u = v_0$, else empty
- Transitions:
 - receive $(m)_{v,u}$
 - Effect: if m + 1 < dist then
 - -dist := m + 1
 - -parent := v
 - for every w, add *dist* to *send(w)*

Process Automaton P_u

- Transitions:
 - receive $(m)_{v,u}$
 - Effect: if m + 1 < dist then
 - -dist := m + 1
 - -parent := v
 - for every w, add m + 1 to send(w)
 - send $(m)_{u,v}$
 - Precondition: m = head(send(v))
 - Effect: remove head of send(v)
- No terminating actions...

Correctness

- For synchronous BFS, we characterized precisely the situation after *r* rounds.
- We can't do that now.
- Instead, state abstract properties, e.g., invariants and timing properties, e.g.:
- Invariant: At any point, for any node $u \neq v_0$, if its $dist \neq \infty$, then it is the actual distance on some path from v_0 to u, and its *parent* is u's predecessor on such a path.
- Timing property: For any node u, and any r, $0 \le r \le diam$, if there is an at-most-r-hop path from v_0 to u, then by time $r \cdot n \cdot d$, node u's dist is $\le r$.

Complexity

- Message complexity:
 - Number of messages sent by all processes during the entire execution.
 - O(n |E|)
- Time complexity:
 - Time until all processes' *dist* and *parent* values have stabilized.
 - Neglect local processing time.
 - $O(diam \cdot n \cdot d)$
 - Time until each node receives a message along a shortest path, counting time $O(n \cdot d)$ to traverse each link.

Termination

- Q: How can processes learn when the tree is completed?
- Q: How can a process know when it can output its own dist and parent?
- Knowing a bound on n doesn't help here: can't use it to count rounds.
- Can use convergecast, as for synchronous Bellman-Ford:
 - Compute and recompute child pointers.
 - Process $\neq v_0$ sends *done* to its current parent after:
 - It has received responses to all its messages, so it believes it knows all its children, and
 - It has received *done* messages from all of those children.
 - The same process may be involved several times, based on improved estimates.

Uses of Breadth-First Spanning Trees

- Same as in synchronous networks, e.g.:
 - Broadcast a sequence of messages
 - Global function computation
- Similar costs, but now count time d instead of one round.

Shortest Paths Trees

Shortest Paths

- Problem: Compute a Shortest Paths Spanning Tree in an asynchronous network.
- Connected weighted graph, root vertex v_0 .
- $weight_{\{u,v\}}$ for edge $\{u,v\}$.
- Processes have no knowledge about the graph, except for weights of incident edges.
- UIDs
- Processes must produce a Shortest Paths spanning tree rooted at v_0 .
- Each process $u \neq v_0$ should output its distance and parent in the tree.

Shortest Paths

- Use a relaxation algorithm, once again.
- Asynchronous Bellman-Ford.
- Now, it handles two kinds of corrections:
 - Because of long, small-weight paths (as in synchronous Bellman-Ford).
 - Because of asynchrony (as in asynchronous Breadth-First search).
- The combination leads to surprisingly high message and time complexity, much worse than either type of correction alone (exponential).

Asynch Bellman-Ford, Process P_u

- Input actions: $receive(m)_{v,u}$, m a nonnegative integer
- Output actions: $send(m)_{u,v}$, m a nonnegative integer
- State variables:
 - *− parent*: $\Gamma(u) \cup \{ \bot \}$, initially \bot
 - *dist* ∈ $N \cup \{\infty\}$, initially 0 if $u = v_0$, ∞ otherwise
 - For every $v \in \Gamma(u)$:
 - send(v), a FIFO queue of N, initially (0) if $u = v_0$, else empty
- Transitions:
 - receive $(m)_{v,u}$
 - Effect: if $m + weight_{\{v,u\}} < dist$ then
 - $dist := m + weight_{\{v,u\}}$
 - -parent := v
 - for every w, add *dist* to *send*(w)

Asynch Bellman-Ford, Process P_u

- Transitions:
 - $-receive(m)_{v,u}$
 - Effect: if $m + weight_{\{v,u\}} < dist$ then $-dist := m + weight_{\{v,u\}}$

-parent := v

- -for every w, add dist to send(w)
- send $(m)_{u,v}$
 - Precondition: m = head(send(v))
 - Effect: remove head of send(v)
- No terminating actions...

Correctness: Invariants and Timing Properties

- Invariant: At any point, for any node $u \neq v_0$, if its $dist \neq \infty$, then it is the actual distance on some path from v_0 to u, and its *parent* is u's predecessor on such a path.
- Timing property: For any node u, and any $r, 0 \le r \le diam$, if p is any at-most-r-hop path from v_0 to u, then by time ???, node u's dist is \le total weight of p.
- Q: What is ??? ?
- It depends on how many messages might pile up in a channel.
- This can be a lot!

Complexity

- O(n!) simple paths from v₀ to any other node u, which is O(nⁿ).
- So the number of messages sent on any channel is $O(n^n)$.
- Message complexity: $O(n^n |E|)$.
- Time complexity: $O(n^n \cdot n \cdot d)$.
- Q: Are such exponential bounds really achievable?

Complexity

- Q: Are such exponential bounds really achievable?
- Example:
 - There is an execution of the network below in which node v_k sends $2^k \approx 2^{n/2}$ messages to node v_{k+1} .
 - Message complexity is $\Omega(2^{n/2})$.
 - Time complexity is $\Omega(2^{n/2} d)$.

Complexity

- Execution in which node v_k sends 2^k messages to node v_{k+1} .
- Possible distance estimates for v_k are $2^k 1, 2^k 2, ..., 0$.
- Moreover, v_k can take on all these estimates in sequence:
 - First, messages traverse upper links, $2^k 1$.
 - Then last lower message arrives at v_k , $2^k 2$.
 - Then lower message $v_{k-2} \rightarrow v_{k-1}$ arrives, reduces v_{k-1} 's estimate by 2, message $v_{k-1} \rightarrow v_k$ arrives on upper links, $2^k 3$.
 - Etc. Count down in binary.
 - If this happens quickly, get pileup of 2^k search messages in $C_{k,k+1}$.

Termination

- Q: How can processes learn when the tree is completed?
- Q: How can a process know when it can output its own dist and parent?
- Convergecast, once again
 - Compute and recompute child pointers.
 - Process $\neq v_0$ sends *done* to its current parent after:
 - It has received responses to all its messages, so it believes it knows all its children, and
 - It has received *done* messages from all of those children.
 - The same process may be involved several (many) times, based on improved estimates.

Shortest Paths

- Moral: Unrestrained asynchrony can cause problems.
- What to do?
- Find out in 6.852/18.437, Distributed Algorithms!

What's Next?

- 6.852/18.437 Distributed Algorithms
- Basic grad course
- Covers synchronous, asynchronous, and timing-based algorithms
- Synchronous algorithms:
 - Leader election
 - Building various kinds of spanning trees
 - Maximal Independent Sets and other network structures
 - Fault tolerance
 - Fault-tolerant consensus, commit, and related problems

Asynchronous Algorithms

- Asynchronous network model
- Leader election, network structures.
- Algorithm design techniques:
 - Synchronizers
 - Logical time
 - Global snapshots, stable property detection.
- Asynchronous shared-memory model
- Mutual exclusion, resource allocation
- Fault tolerance
- Fault-tolerant consensus and related problems
- Atomic data objects, atomic snapshots
- Transformations between models.
- Self-stabilizing algorithms

And More

- Timing-based algorithms
 - Models
 - Revisit some problems
 - New problems, like clock synchronization.
- Newer work (maybe):
 - Dynamic network algorithms
 - Wireless networks
 - Insect colony algorithms and other biological distributed algorithms

MIT OpenCourseWare http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.