Distributed Algorithms 6.046J, Spring, 2015 Part 2

Nancy Lynch

This Week

- Synchronous distributed algorithms:
- Leader Election
- Maximal Independent Set
- Breadth-First Spanning Trees
- Shortest Paths Trees (started)
- Shortest Paths Trees (finish)
- Asynchronous distributed algorithms:
- Breadth-First Spanning Trees
- Shortest Paths Trees

Distributed Networks

- Based on undirected graph $G=(V, E)$.
$-n=|V|$
$-\Gamma(u)$, set of neighbors of vertex u.
$-\operatorname{deg}(u)=|\Gamma(u)|$, number of neighbors of vertex u.
- Associate a process with each graph vertex.
- Associate two directed communication channels with each edge.

Synchronous Distributed Algorithms

Synchronous Network Model

- Processes at graph vertices, communicate using messages.
- Each process has output ports, input ports that connect to communication channels.
- Algorithm executes in synchronous rounds.
- In each round:
- Each process sends messages on its ports.
- Each message gets put into the channel, delivered to the process at the other end.
- Each process computes a new state based on the arriving messages.

Leader Election

n-vertex Clique

- Theorem: There is no algorithm consisting of deterministic, indistinguishable processes that is guaranteed to elect a leader in G.

- Theorem: There is an algorithm consisting of deterministic processes with UIDs that is guaranteed to elect a leader.
- 1 round, n^{2} messages.
- Theorem: There is an algorithm consisting of randomized, indistinguishable processes that eventually elects a leader, with probability 1.
- Expected time $\leq \frac{1}{1-\epsilon}$.
- With probability $\geq 1-\epsilon$, finishes in one round.

Maximal Independent Set (MIS)

MIS

- Independent: No two neighbors are both in the set.
- Maximal: We can't add any more nodes without violating independence.
- Every node is either in S or has a neighbor in S.
- Assume:
- No UIDs
- Processes know a good upper bound on n.
- Require:
- Compute an MIS S of the network graph.
- Each process in S should output in, others output out.

Luby's Algorithm

- Initially all nodes are active.
- At each phase, some active nodes decide to be in, others decide to be out, the rest continue to the next phase.
- Behavior of active node at a phase:
- Round 1:
- Choose a random value r in $\left\{1,2, \ldots, n^{5}\right\}$, send it to all neighbors.
- Receive values from all active neighbors.
- If r is strictly greater than all received values, then join the MIS, output in.
- Round 2 :
- If you joined the MIS, announce it in messages to all (active) neighbors.
- If you receive such an announcement, decide not to join the MIS, output out.
- If you decided one way or the other at this phase, become inactive.

Luby's Algorithm

- Theorem: If Luby's algorithm ever terminates, then the final set S is an MIS.
- Theorem: With probability at least $1-\frac{1}{n}$, all nodes decide within $4 \log n$ phases.

Breadth-First Spanning Trees

Breadth-First Spanning Trees

- Distinguished vertex v_{0}.
- Processes must produce a Breadth-First Spanning Tree rooted at vertex v_{0}.
- Assume:
- UIDs.
- Processes have no knowledge about the graph.
- Output: Each process $i \neq i_{0}$ should output parent(j).

Simple BFS Algorithm

- Processes mark themselves as they get incorporated into the tree.
- Initially, only i_{0} is marked.
- Algorithm for process i :
- Round 1:
- If $i=i_{0}$ then process i sends a search message to its neighbors.
- If process i receives a message, then it:
- Marks itself.
- Selects i_{0} as its parent, outputs parent $\left(i_{0}\right)$.
- Plans to send at the next round.
- Round $r>1$:
- If process i planned to send, then it sends a search message to its neighbors.
- If process i is not marked and receives a message, then it:
- Marks itself.
- Selects one sending neighbor, j, as its parent, outputs parent (j).
- Plans to send at the next round.

Correctness

- State variables, per process:
- marked, a Boolean, initially true for i_{0}, false for others
- parent, a UID or undefined
- send, a Boolean, initially true for i_{0}, false for others
- uid
- Invariants:
- At the end of r rounds, exactly the processes at distance $\leq r$ from v_{0} are marked.
- A process $\neq i_{0}$ has its parent defined iff it is marked.
- For any process at distance d from v_{0}, if its parent is defined, then it is the UID of a process at distance $d-1$ from v_{0}.

Complexity

- Time complexity:
- Number of rounds until all nodes outputs their parent information.
- Maximum distance of any node from v_{0}, which is \leq diam
- Message complexity:
- Number of messages sent by all processes during the entire execution.
- $O(|E|)$

Bells and Whistles

- Child pointers:
- Send parent/nonparent responses to search messages.
- Distances:
- Piggyback distances on search messages.
- Termination:
- Convergecast starting from the leaves.
- Applications:
- Message broadcast from the root
- Global computation

Shortest Paths Trees

18

Shortest Paths

- Generalize the BFS problem to allow weights on the graph edges, weight ${ }_{\{u, v\}}$ for edge $\{u, v\}$
- Connected graph $G=(V, E)$, root vertex v_{0}, process i_{0}.
- Processes have UIDs.
- Processes know their neighbors and the weights of their incident edges, but otherwise have no knowledge about the graph.

Shortest Paths

- Processes must produce a Shortest-Paths Spanning Tree rooted at vertex v_{0}.
- Branches are directed paths from v_{0}.
- Spanning: Branches reach all vertices.
- Shortest paths: The total weight of the tree branch to each node is the minimum total weight for any path from v_{0} in G.
- Output: Each process $i \neq i_{0}$ should output parent (j), distance (d), meaning that:
- j 's vertex is the parent of i 's vertex on a shortest path from v_{0},
$-d$ is the total weight of a shortest path from v_{0} to j.

Bellman-Ford Shortest Paths Algorithm

- State variables:
- dist, a nonnegative real or ∞, representing the shortest known distance from v_{0}. Initially 0 for process i_{0}, ∞ for the others.
- parent, a UID or undefined, initially undefined.
- uid
- Algorithm for process i :
- At each round:
- Send a distance(dist) message to all neighbors.
- Receive messages from neighbors; let d_{j} be the distance received from neighbor j.
- Perform a relaxation step:
dist $:=\min \left(\right.$ dist, $\min _{j}\left(d_{j}+\right.$ weight $\left._{\{i, j\}}\right)$.
- If dist decreases then set parent $:=j$, where j is any neighbor that produced the new dist.

Correctness

- Claim: Eventually, every process i has:
- dist = minimum weight of a path from i_{0} to i, and
- if $i \neq i_{0}$, parent $=$ the previous node on some shortest path from i_{0} to i.
- Key invariant:
- For every r, at the end of r rounds, every process $i \neq i_{0}$ has its dist and parent corresponding to a shortest path from i_{0} to i among those paths that consist of at most r edges; if there is no such path, then dist $=\infty$ and parent is undefined.

Complexity

- Time complexity:
- Number of rounds until all the variables stabilize to their final values.
- $n-1$ rounds
- Message complexity:
- Number of messages sent by all processes during the entire execution.
- $O(n \cdot|E|)$
- More expensive than BFS:
- diam rounds,
- $O(|E|)$ messages
- Q: Does the time bound really depend on n ?

Child Pointers

- Ignore repeated messages.
- When process i receives a message that it does not use to improve dist, it responds with a nonparent message.
- When process i receives a message that it uses to improve dist, it responds with a parent message, and also responds to any previous parent with a nonparent message.
- Process i records nodes from which it receives parent messages in a set children.
- When process i receives a nonparent message from a current child, it removes the sender from its children.
- When process i improves dist, it empties children.

Termination

- Q: How can the processes learn when the shortestpaths tree is completed?
- Q: How can a process even know when it can output its own parent and distance?
- If processes knew an upper bound on n, then they could simply wait until that number of rounds have passed.
- But what if they don't know anything about the graph?
- Recall termination for BFS: Used convergecast.
- Q: Does that work here?

Termination

- Q: How can the processes learn when the shortestpaths tree is completed?
- Q: Does convergecast work here?
- Yes, but it's trickier, since the tree structure changes.
- Key ideas:
- A process $\neq i_{0}$ can send a done message to its current parent after:
- It has received responses to all its distance messages, so it believes it knows who its children are, and
- It has received done messages from all of those children.
- The same process may be involved several times in the convergecast, based on improved estimates.

Termination

Asynchronous Distributed Algorithms

Asynchronous Network Model

- Complications so far:
- Processes act concurrently.
- A little nondeterminism.
- Now things get much worse:
- No rounds---process steps and message deliveries happen at arbitrary times, in arbitrary orders.
- Processes get out of synch.
- Much more nondeterminism.
- Understanding asynchronous distributed algorithms is hard because we can't understand exactly how they execute.
- Instead, we must understand abstract properties of executions.

Aynchronous Network Model

- Lynch, Distributed Algorithms, Chapter 8.
- Processes at nodes of an undirected graph $G=(V, E)$, communicate using messages.
- Communication channels associated with edges (one in each direction on each edge).
- $C_{u, v}$, channel from vertex u to vertex v.
- Each process has output ports and input ports that connect it to its communication
 channels.
- Processes need not be distinguishable.

Channel Automaton $C_{u, v}$

- Formally, an input/output automaton.
- Input actions: send $(m)_{u, v}$
- Output actions: receive $(m)_{u, v}$
- State variable:
- mqueue, a FIFO queue, initially empty.
- Transitions:
$-\operatorname{send}(m)_{u, v}$
- Effect: add m to mqueue.
- receive (m)u,v
- Precondition: $m=$ head(mqueue)
- Effect: remove head of mqueue

Process Automaton P_{u}

- Associate a process automaton with each vertex of G.
- To simplify notation, let P_{u} denote the process automaton at vertex u.
- But the process does not "know" u.
- P_{u} has send $(m)_{u, v}$ outputs and receive $(m)_{v, u}$ inputs.
- May also have external inputs and outputs.

- Has state variables.
- Keeps taking steps (eventually).

Example: $M a x_{u}$ Process Automaton

- Input actions: receive $(m)_{v, u}$
- Output actions: send $(m)_{u, v}$
- State variables:
- max, a natural number, initially x_{u}
- For each neighbor v :
- send(v), a Boolean, initially true
- Transitions:
- receive $(m)_{v, u}$
- Effect: if $m>\max$ then
$-\max :=m$
- for every $w, \operatorname{send}(w):=$ true

$-\operatorname{send}(m)_{u, v}$
- Precondition: $\operatorname{send}(v)=$ true and $m=\max$
- Effect: $\operatorname{send}(v):=$ false

Combining Processes and Channels

- Undirected graph $G=(V, E)$.
- Process P_{u} at each vertex u.
- Channels $C_{u, v}$ and $C_{v, u}$, associated with each edge $\{u, v\}$.
- send $(m)_{u, v}$ output of process P_{u} gets identified with send $(m)_{u, v}$ input of channel $C_{u, v}$.
- receive $(m)_{v, u}$ output of channel $C_{v, u}$ gets identified with receive $(m)_{v, u}$ input of process P_{u}.
- Steps involving such a shared action involve simultaneous state transitions for a process and a channel.

Execution

- No synchronous rounds anymore.
- The system executes by performing enabled steps, one at a time, in any order.
- Formally, an execution is modeled as a sequence of individual steps.
- Different from the synchronous model, in which all processes take steps concurrently at each round.
- Assume enabled steps eventually occur:
- Each channel always eventually delivers the first message in its queue.
- Each process always eventually performs some enabled step.

Combining Max Processes and Channels

- Each process Max_{u} starts with an initial value x_{u}.
- They all send out their initial values, and propagate their max values, until everyone has the globally-maximum value.
- Sending and receiving steps can happen in many different orders, but in all cases the global max will eventually arrive everywhere.

Max System

Complexity

- Message complexity:
- Number of messages sent by all processes during the entire execution.
- $O(n \cdot|E|)$
- Time complexity:
- Q: What should we measure?
- Not obvious, because the various components are taking steps in arbitrary orders---no "rounds".
- A common approach:
- Assume real-time upper bounds on the time to perform basic steps:
- d for a channel to deliver the next message, and
- l for a process to perform its next step.
- Infer a real-time upper bound for solving the overall problem.

Complexity

- Time complexity:
- Assume real-time upper bounds on the time to perform basic steps:
- d for a channel to deliver the next message, and
- l for a process to perform its next step.
- Infer a real-time upper bound for solving the problem.
- For the Max system:
- Ignore local processing time ($l=0$), consider only channel sending time.
- Straightforward upper bound: $O(\operatorname{diam} \cdot n \cdot d)$
- Consider the time for the max to reach any particular vertex u, along a shortest path in the graph.
- At worst, it waits in each channel on the path for every other value, which is at most time $n \cdot d$ for that channel.

Breadth-First Spanning Trees

Breadth-First Spanning Trees

- Problem: Compute a Breadth-First Spanning Tree in an asynchronous network.
- Connected graph $G=(V, E)$.
- Distinguished root vertex v_{0}.
- Processes have no knowledge about the graph.
- Processes have UIDs
$-i_{0}$ is the UID of the root v_{0}.
- Processes know UIDs of their neighbors, and know which ports are connected to each neighbor.
- Processes must produce a BFS tree rooted at v_{0}.
- Each process $i \neq i_{0}$ should output parent (j), meaning that j 's vertex is the parent of i 's vertex in the BFS tree.

First Attempt

- Just run the simple synchronous BFS algorithm asynchronously.
- Process i_{0} sends search messages, which everyone propagates the first time they receive it.
- Everyone picks the first node from which it receives a search message as its parent.
- Nondeterminism:
- No longer any nondeterminism in process decisions.
- But plenty of new nondeterminism: orders of message deliveries and process steps.

Process Automaton P_{u}

- Input actions: receive $(\text { search })_{v, u}$
- Output actions: send(search) ${ }_{u, v} ; \operatorname{parent}(v)_{u}$
- State variables:
- parent: $\Gamma(u) \cup\{\perp\}$, initially \perp
- reported: Boolean, initially false
- For every $v \in \Gamma(u)$:
- $\operatorname{send}(v) \in\{$ search,$\perp\}$, initially search if $u=v_{0}$, else \perp
- Transitions:
- receive $(\text { search })_{v, u}$
- Effect: if $u \neq v_{0}$ and parent $=\perp$ then
- parent $:=v$
- for every $w, \operatorname{send}(w):=$ search

Process Automaton P_{u}

- Transitions:
- receive (search) ${ }_{v, u}$
- Effect: if $u \neq v_{0}$ and parent $=\perp$ then
- parent $:=v$
- for every $w, \operatorname{send}(w):=$ search
- send(search) ${ }_{u, v}$
- Precondition: $\operatorname{send}(v)=\operatorname{search}$
- Effect: $\operatorname{send}(v):=\perp$
- parent $(v)_{u}$
- Precondition: parent $=v$ and reported $=$ false
- Effect: reported := true

Running Simple BFS Asynchronously

Final Spanning Tree

Actual BFS

Anomaly

- Paths produced by the algorithm may be longer than the shortest paths.
- Because in asynchronous networks, messages may propagate faster along longer paths.

Complexity

- Message complexity:
- Number of messages sent by all processes during the entire execution.
- $O(|E|)$
- Time complexity:
- Time until all processes have chosen their parents.
- Neglect local processing time.
- O(diam•d)
- Q: Why diam, when some of the paths are longer?
- The time until a node receives a search message is at most the time it would take on a shortest path.

Extensions

- Child pointers:
- As for synchronous BFS.
- Everyone who receives a search message sends back a parent or nonparent response.
- Termination:
- After a node has received responses to all its search its messages, it knows who its children are, and knows they are marked.
- The leaves of the tree learn who they are.
- Use a convergecast strategy, as before.
- Time complexity: After the tree is done, it takes time $O(n \cdot d)$ for the done information to reach i_{0}.
- Message complexity: $O(n)$

Applications

- Message broadcast:
- Process i_{0} can use the tree (with child pointers) to broadcast a message.
- Takes $O(n \cdot d)$ time and n messages.
- Global computation:
- Suppose every process starts with some initial value, and process i_{0} should determine the value of some function of the set of all processes' values.
- Use convergecast on the tree.
- Takes $O(n \cdot d)$ time and n messages.

Second Attempt

- A relaxation algorithm, like synchronous Bellman-Ford.
- Before, we corrected for paths with many hops but low weights.
- Now, instead, correct for errors caused by asynchrony.
- Strategy:
- Each process keeps track of the hop distance, changes its parent when it learns of a shorter path, and propagates the improved distances.
- Eventually stabilizes to a breadth-first spanning tree.

Process Automaton P_{u}

- Input actions: receive $(m)_{v, u}, m$ a nonnegative integer
- Output actions: send $(m)_{u, v}, m$ a nonnegative integer
- State variables:
- parent: $\Gamma(u) \cup\{\perp\}$, initially \perp
- dist $\in N \cup\{\infty\}$, initially 0 if $u=v_{0}, \infty$ otherwise
- For every $v \in \Gamma(u)$:
- $\operatorname{send}(v)$, a FIFO queue of N, initially (0) if $u=v_{0}$, else empty
- Transitions:
- receive ($m)_{v, u}$
- Effect: if $m+1<$ dist then
- dist $:=m+1$
- parent $:=v$
- for every w, add dist to send(w)

Process Automaton P_{u}

- Transitions:
- receive $(m)_{v, u}$
- Effect: if $m+1<$ dist then
- dist $:=m+1$
- parent $:=v$
- for every w, add $m+1$ to $\operatorname{send}(w)$
$-\operatorname{send}(m)_{u, v}$
- Precondition: $m=$ head $(\operatorname{send}(v))$
- Effect: remove head of $\operatorname{send}(v)$
- No terminating actions...

Correctness

- For synchronous BFS, we characterized precisely the situation after r rounds.
- We can't do that now.
- Instead, state abstract properties, e.g., invariants and timing properties, e.g.:
- Invariant: At any point, for any node $u \neq v_{0}$, if its dist $\neq \infty$, then it is the actual distance on some path from v_{0} to u, and its parent is u 's predecessor on such a path.
- Timing property: For any node u, and any r, $0 \leq r \leq d i a m$, if there is an at-most- r-hop path from v_{0} to u, then by time $r \cdot n \cdot d$, node u 's dist is $\leq r$.

Complexity

- Message complexity:
- Number of messages sent by all processes during the entire execution.
- $O(n|E|)$
- Time complexity:
- Time until all processes' dist and parent values have stabilized.
- Neglect local processing time.
- O(diam $n \cdot d$)
- Time until each node receives a message along a shortest path, counting time $O(n \cdot d)$ to traverse each link.

Termination

- Q: How can processes learn when the tree is completed?
- Q: How can a process know when it can output its own dist and parent?
- Knowing a bound on n doesn't help here: can't use it to count rounds.
- Can use convergecast, as for synchronous Bellman-Ford:
- Compute and recompute child pointers.
- Process $\neq v_{0}$ sends done to its current parent after:
- It has received responses to all its messages, so it believes it knows all its children, and
- It has received done messages from all of those children.
- The same process may be involved several times, based on improved estimates.

Uses of Breadth-First Spanning Trees

- Same as in synchronous networks, e.g.:
- Broadcast a sequence of messages
- Global function computation
- Similar costs, but now count time d instead of one round.

Shortest Paths Trees

Shortest Paths

- Problem: Compute a Shortest Paths Spanning Tree in an asynchronous network.
- Connected weighted graph, root vertex v_{0}.
- weight $t_{\{u, v\}}$ for edge $\{u, v\}$.
- Processes have no knowledge about the graph, except for weights of incident edges.
- UIDs
- Processes must produce a Shortest Paths spanning tree rooted at v_{0}.
- Each process $u \neq v_{0}$ should output its distance and parent in the tree.

Shortest Paths

- Use a relaxation algorithm, once again.
- Asynchronous Bellman-Ford.
- Now, it handles two kinds of corrections:
- Because of long, small-weight paths (as in synchronous Bellman-Ford).
- Because of asynchrony (as in asynchronous Breadth-First search).
- The combination leads to surprisingly high message and time complexity, much worse than either type of correction alone (exponential).

Asynch Bellman-Ford, Process P_{u}

- Input actions: receive $(m)_{v, u}, m$ a nonnegative integer
- Output actions: send $(m)_{u, v}, m$ a nonnegative integer
- State variables:
- parent: $\Gamma(u) \cup\{\perp\}$, initially \perp
- dist $\in N \cup\{\infty\}$, initially 0 if $u=v_{0}, \infty$ otherwise
- For every $v \in \Gamma(u):$
- $\operatorname{send}(v)$, a FIFO queue of N, initially (0) if $u=v_{0}$, else empty
- Transitions:
- receive $(m)_{v, u}$
- Effect: if $m+$ weight $_{\{v, u\}}<$ dist then
- dist $:=m+$ weight $_{\{v, u\}}$
- parent $:=v$
- for every w, add dist to send (w)

Asynch Bellman-Ford, Process P_{u}

- Transitions:
- receive $(m)_{v, u}$
- Effect: if $m+$ weight $_{\{v, u\}}<$ dist then
- dist $:=m+$ weight $_{\{v, u\}}$
-parent:=v
- for every w, add dist to send(w)
$-\operatorname{send}(m)_{u, v}$
- Precondition: $m=$ head $(\operatorname{send}(v))$
- Effect: remove head of $\operatorname{send}(v)$
- No terminating actions...

Correctness:

Invariants and Timing Properties

- Invariant: At any point, for any node $u \neq v_{0}$, if its dist $\neq \infty$, then it is the actual distance on some path from v_{0} to u, and its parent is u 's predecessor on such a path.
- Timing property: For any node u, and any $r, 0 \leq r \leq$ diam, if p is any at-most- r-hop path from v_{0} to u, then by time ???, node u 's dist is \leq total weight of p.
- Q: What is ??? ?
- It depends on how many messages might pile up in a channel.
- This can be a lot!

Complexity

- $O(n!)$ simple paths from v_{0} to any other node u, which is $O\left(n^{n}\right)$.
- So the number of messages sent on any channel is $O\left(n^{n}\right)$.
- Message complexity: $O\left(n^{n}|E|\right)$.
- Time complexity: $O\left(n^{n} \cdot n \cdot d\right)$.
- Q: Are such exponential bounds really achievable?

Complexity

- Q: Are such exponential bounds really achievable?
- Example:
- There is an execution of the network below in which node v_{k} sends $2^{k} \approx 2^{\mathrm{n} / 2}$ messages to node $v_{\mathrm{k}+1}$.
- Message complexity is $\Omega\left(2^{\mathrm{n} / 2}\right)$.
- Time complexity is $\Omega\left(2^{n / 2} d\right)$.

Complexity

- Execution in which node v_{k} sends 2^{k} messages to node $v_{\mathrm{k}+1}$.
- Possible distance estimates for v_{k} are $2^{k}-1,2^{k}-2, \ldots, 0$.
- Moreover, v_{k} can take on all these estimates in sequence:
- First, messages traverse upper links, 2^{k} - 1 .
- Then last lower message arrives at $v_{k}, 2^{k}-2$.
- Then lower message $v_{k-2} \rightarrow v_{k-1}$ arrives, reduces v_{k-1} 's estimate by 2 , message $v_{k-1} \rightarrow v_{k}$ arrives on upper links, $2^{k}-3$.
- Etc. Count down in binary.
- If this happens quickly, get pileup of 2^{k} search messages in $C_{k, k+1}$.

Termination

- $\mathrm{Q}:$ How can processes learn when the tree is completed?
- Q: How can a process know when it can output its own dist and parent?
- Convergecast, once again
- Compute and recompute child pointers.
- Process $\neq v_{0}$ sends done to its current parent after:
- It has received responses to all its messages, so it believes it knows all its children, and
- It has received done messages from all of those children.
- The same process may be involved several (many) times, based on improved estimates.

Shortest Paths

- Moral: Unrestrained asynchrony can cause problems.
- What to do?
- Find out in 6.852/18.437, Distributed Algorithms!

What's Next?

- 6.852/18.437 Distributed Algorithms
- Basic grad course
- Covers synchronous, asynchronous, and timing-based algorithms
- Synchronous algorithms:
- Leader election

- Building various kinds of spanning trees
- Maximal Independent Sets and other network structures
- Fault tolerance
- Fault-tolerant consensus, commit, and related problems

Asynchronous Algorithms

- Asynchronous network model
- Leader election, network structures.

- Algorithm design techniques:
- Synchronizers
- Logical time
- Global snapshots, stable property detection.
- Asynchronous shared-memory model
- Mutual exclusion, resource allocation
- Fault tolerance
- Fault-tolerant consensus and related problems

- Atomic data objects, atomic snapshots
- Transformations between models.
- Self-stabilizing algorithms

And More

- Timing-based algorithms
- Models
- Revisit some problems
- New problems, like clock synchronization.
- Newer work (maybe):
- Dynamic network algorithms
- Wireless networks
- Insect colony algorithms and other biological distributed algorithms

MIT OpenCourseWare
|http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms

Spring 2015

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

