Lecture 22: Cryptography: Encryption

- Symmetric key encryption
- Key exchange
- Asymmetric key encryption
- RSA
- NP-complete problems and cryptography
- graph coloring
- knapsack

Symmetric key encryption

$$
\begin{aligned}
& c=e_{k}(m) \\
& m=d_{k}(c)
\end{aligned}
$$

Here c is the ciphertext, m is the plaintext, e is the encryption function, d is the decryption function and k is the secret key. e, d permute and reverse-permute the space of all messages.

Reversible operations: $\oplus,+/-$, shift left/right.
Symmetric algorithms: AES, RC5, DES

Key Management Question

How does secret key k get exchanged/shared?
Alice wants to send a message to Bob. There are pirates between Alice and Bob, that will take any keys or messages in unlocked box(es), but won't touch locked boxes. How can Alice send a message or a key to Bob (without pirates knowing what was sent)?

Solution:

- Alice puts m in box, locks it with k_{A}
- Box sent to Bob
- Bob locks box with k_{B}
- Box sent to Alice
- Alice unlocks k_{A}
- Box sent to Bob
- Bob unlocks k_{B}, reads m

Notice that this method relied on the commutativity of the locks. This means that the order of the lock and unlock operations doesn't matter.

Diffie-Hellman Key Exchange

$$
G=F_{p}^{*}
$$

Here F_{p}^{*} is a finite field $(\bmod p$, a prime). $*$ means invertible elements only $(\{1,2, \ldots, p-1\})$
Alice
g public
p public
Bob
$2 \leq g \leq p-2$

Select a
Compute $g^{a} \longrightarrow \quad g^{a} \quad 1 \leq a, b \leq p-2$
Select b
$g^{b} \quad \longleftarrow \quad$ Compute g^{b}

Alice can compute $\left(g^{b}\right)^{a} \bmod p=k$.
Bob can compute $\left(g^{a}\right)^{b} \bmod p=k$.
Assumes the Discrete Log Problem is hard (given g^{a}, compute a) and Diffie Hellman Problem is hard (given g^{a}, g^{b} compute $g^{a b}$).

Can we attack this? Man-in-the-middle:

- Alice doesn't know she is communicating with Bob.
- Alice agrees to a key exchange with Eve (thinking she is Bob).
- Bob agrees to a key exchagne with Eve (thinking she is Alice).
- Eve can see all communications.

Public Key Encryption

$$
\begin{aligned}
& \text { message }+ \text { public key }=\text { ciphertext } \\
& \text { ciphertext }+ \text { private key }=\text { message }
\end{aligned}
$$

The two keys need to be linked in a mathematical way. Knowing the public key should tell you nothing about the private key.

RSA

- Alice picks two large secret primes p and q.
- Alice computes $N=p \cdot q$.
- Chooses an encryption exponent e which satisfies $\operatorname{gcd}(e,(p-1)(q-1))=1$, $e=3,17,65537$.
- Alice's public key $=(N, e)$.
- Decryption exponent obtained using Extended Euclidean Algorithm by Alice such that $e \cdot d \equiv 1 \bmod (p-1)(q-1)$.
- Alice private key $=(d, p, q)$ (storing p and q is not absolutely necessary, but we do it for efficiency).

Encryption and Decryption with RSA

$$
\begin{array}{ll}
c=m^{e} \bmod N & \text { encryption } \\
m=c^{d} \bmod N & \text { decryption }
\end{array}
$$

Why it works

$$
\phi=(p-1)(q-1)
$$

Since $e d \equiv 1 \bmod \phi$ there exists an integer k such that $e d=1+k \phi$.
Two cases:
Case $1 \operatorname{gcd}(m, p)=1$. By Fermat's theorem,

$$
\begin{array}{rlrl}
m^{p-1} & \equiv 1 & \bmod p \\
\left(m^{p-1}\right)^{k(q-1)} \cdot m & \equiv m & \bmod p \\
m^{1+k(p-1)(q-1)}=m^{e d} & \equiv m & & \bmod p
\end{array}
$$

Case $2 \operatorname{gcd}(m, p)=p$. This means that $m \bmod p=0$ and so $m^{e d} \equiv m$
Thus, in both cases, $m^{e d} \equiv m \bmod p$. Similarly, $m^{e d} \equiv m \bmod q$. Since p, q are distinct primes, $m^{e d} \equiv m \bmod N$. So $c^{d}=\left(m^{e}\right)^{d} \equiv m \bmod N$

Hardness of RSA

- Factoring: given N, hard to factor into p, q.
- RSA Problem: given e such that $\operatorname{gcd}(e,(p-1)(q-1))=1$ and c, find m such that $m^{e} \equiv c \bmod N$.

NP-completeness

Is N composite with a factor within a range? unknown if NP-complete
Is a graph \underline{k}-colorable? In other words: can you assign one of k colors to each vertex such that no two vertices connected by an edge share the same color? NPcomplete

Given a pile of n items, each with different weights w_{i}, is it possible to put items in a knapsack such that we get a specific total weight S ? NP-complete

NP-completeness and Cryptography

- NP-completeness: about worst-case complexity
- Cryptography: want a problem instance, with suitably chosen parameters that is hard on average

Most knapsack cryptosystems have failed.
Determining if a graph is 3 -colorable is NP-complete, but very easy on average. This is because an average graph, beyond a certain size, is not 3 -colorable!

Consider a standard backtracking search to determine 3-colorability.

- Order vertices v_{1}, \ldots, v_{t}. Colors $=\{1,2,3\}$
- Traverse graph in order of vertices.
- On visiting a vertex, choose smallest possible color that "works".
- If you get stuck, backtrack to previous choice, and try next choice.
- Run out of colors for $1^{\text {st }}$ vertex \rightarrow output 'NO'
- Successfully color last vertex \rightarrow output 'YES'

On a random graph of t vertices, average number of vertices traveled <197, regardless of t !

Knapsack Cryptography

General knapsack problem: NP-complete
Super-increasing knapsack: linear time solvable. In this problem, the weights are constrained as follows:

$$
w_{j} \geq \sum_{i=1}^{j-1} w_{i}
$$

Merkle Hellman Cryptosystem

Private key \rightarrow super-increasing knapsack problem $\xrightarrow{\text { Private transform }}$ "hard" general knapsack problem \rightarrow public key.

Transform: two private integers N, M s.t. $\operatorname{gcd}(N, M)=1$.
Multiply all values in the sequence by N and then take $\bmod M$.
Example: $N=31, M=105$, private key $=\{2,3,6,14,27,52\}$,
public key $=\{62,93,81,88,102,37\}$

Merkle Hellman Example

$$
\begin{array}{cl}
\text { Message }=011000 & 110101 \quad 101110 \\
\text { Ciphertext:011000 } & 93+81=174 \\
110101 & 62+93+88+37=280 \\
101110 & 62+81+88+102=333 \\
& =174,280,333
\end{array}
$$

Recipient knows $N=31, M=105,\{2,3,6,14,27,52\}$. Multiplies each ciphertext block by $N^{-1} \bmod M$. In this case, $N^{-1}=61 \bmod 105$.

$$
\begin{aligned}
& 174 \cdot 61=9=3+6=011000 \\
& 280 \cdot 61=70=2+3+13+52=110101 \\
& 333 \cdot 61=48=2+6+13+27=101110
\end{aligned}
$$

Beautiful but broken

Lattice based techniques break this scheme.
Density of knapsack $d=\frac{n}{\max \left\{\log _{2} w_{i}: 1 \leq i \leq n\right\}}$
Lattice basis reduction can solve knapsacks of low density. Unfortunately, M-H scheme always produces knapsacks of low density.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

