MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 6.071 Introduction to Electronics, Signals and Measurement
 Spring 2006

Laboratory 19: BJT Biasing and Amplification

For our experiments we will use the 2 N 3904 npn BJT whose pinout is

Exercise 1.

For the circuit below calculate the Q-point assuming that the transistor has $\beta=100$

- Find the Q-point for $R_{1}=20 \mathrm{k} \Omega, R_{2}=5 k \Omega, R_{C}=3 k \Omega, R_{E}=1 \mathrm{k} \Omega, V c c=10 \mathrm{~V}$
- For $R_{1}=20 k \Omega, R_{2}=5 k \Omega, R_{E}=1 \mathrm{k} \Omega, V c c=10 \mathrm{~V}$ determine R_{C} so that the collector-emitter voltage is $V_{C E}=V_{C C} / 2$

- For $R_{1}=20 k \Omega, R_{2}=5 k \Omega, R_{E}=1 k \Omega, V c c=10 \mathrm{~V}$, determine resistor R_{C} so that the transistor enters saturation.

Experiment 1.

Here we will build and test the common-emitter amplifier circuit shown below.

Build the circuit with $R_{1}=20 \mathrm{k} \Omega, R_{2}=5 k \Omega, R_{C}=5 k \Omega, R_{E}=1 k \Omega, V c c=10 \mathrm{~V}$. These values should give a Q-point: $I_{C Q}=1.3 \mathrm{~mA}, V_{C E Q}=2.5 \mathrm{~V}$ For $V_{C C}$ use the variable power supply and set the voltage to 10 Volts. The signal $V i$ is available at $D A C 0$.

What would value would you use for the coupling capacitor C1 and why?

What is the anticipated small signal gain of this amplifier?

Make the connections as indicated on the schematic and then download from the Labs section the instrument called BJTamp.vi and run it.

First set the amplitude and the offset of the input signal to zero. What is the measured value of $I_{C Q}$ and $V_{C E Q}$? Do they agree with the numbers given above? How close are they? Why the difference?

Now set the offset of the input signal to a non-zero value and observe the results. Compare VB for zero and non-zero offset for the input signal. How effective is your coupling capacitor C 1 in blocking the DC component in the input signal?

Take measurements for various amplitudes of $\mathrm{Vi}(0.1 \mathrm{~V}-1.5 \mathrm{~V})$ and record them on the table below. PtP stands for Peak to Peak. PtP=2*Amplitude

$V i$		$V B$		$V E$		$V o$	
PtP	Offset	PtP	Offset	PtP	Offset	PtP	Offset
0.2							
0.4							
0.6							
0.8							
1.0							
1.5							

What happens to the output Vo as the amplitude of Vi increases?

Experiment 2.

Now let's modify "slightly" the circuit by adding the load resistor R_{L} and the output coupling capacitor $C 2$ as indicated on the following schematic. Use $R_{L}=5 k \Omega$.
R_{L} and $C 2$ form a high pass filter thereby blocking any DC component of the voltage at the collector of the transistor. What value would you use for $C 2$?

(Note now that the measurement ACH2+ is taken between R_{L} and C2.)
Start the instrument BJTamp.vi and measure the output voltage $V o$ for $V i=100 \mathrm{mV}$.
DC component of $V o=$
Peak to peak value of $V o=$

By comparing the above measurement with the corresponding one obtained in Experiment 1 estimate the output impedance of the device (i.e the impedance seen by the instrument that measures Vo - assume that this instrument is ideal)

