Homework 5 additional problems

1. Heuristic suboptimal solution for Boolean LP. This exercise builds on exercises 4.15 and 5.13 in Convex Optimization, which involve the Boolean LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b \\
& x_{i} \in\{0,1\}, \quad i=1, \ldots, n,
\end{array}
$$

with optimal value p^{\star}. Let $x^{\text {rlx }}$ be a solution of the LP relaxation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b \\
& 0 \preceq x \preceq \mathbf{1}
\end{array}
$$

so $L=c^{T} x^{\mathrm{rlx}}$ is a lower bound on p^{\star}. The relaxed solution x^{rlx} can also be used to guess a Boolean point \hat{x}, by rounding its entries, based on a threshold $t \in[0,1]$:

$$
\hat{x}_{i}= \begin{cases}1 & x_{i}^{\mathrm{rlx}} \geq t \\ 0 & \text { otherwise },\end{cases}
$$

for $i=1, \ldots, n$. Evidently \hat{x} is Boolean (i.e., has entries in $\{0,1\}$). If it is feasible for the Boolean LP, i.e., if $A \hat{x} \preceq b$, then it can be considered a guess at a good, if not optimal, point for the Boolean LP. Its objective value, $U=c^{T} \hat{x}$, is an upper bound on p^{\star}. If U and L are close, then \hat{x} is nearly optimal; specifically, \hat{x} cannot be more than ($U-L$)-suboptimal for the Boolean LP.

This rounding need not work; indeed, it can happen that for all threshold values, \hat{x} is infeasible. But for some problem instances, it can work well.
Of course, there are many variations on this simple scheme for (possibly) constructing a feasible, good point from x^{rlx}.
Finally, we get to the problem. Generate problem data using

```
rand('state',0);
n=100;
m=300;
A=rand (m,n);
b=A*ones(n,1)/2;
c=-rand(n,1);
```

You can think of x_{i} as a job we either accept or decline, and $-c_{i}$ as the (positive) revenue we generate if we accept job i. We can think of $A x \preceq b$ as a set of limits on
m resources. $A_{i j}$, which is positive, is the amount of resource i consumed if we accept job $j ; b_{i}$, which is positive, is the amount of resource i available.
Find a solution of the relaxed LP and examine its entries. Note the associated lower bound L. Carry out threshold rounding for (say) 100 values of t, uniformly spaced over $[0,1]$. For each value of t, note the objective value $c^{T} \hat{x}$ and the maximum constraint violation $\max _{i}(A \hat{x}-b)_{i}$. Plot the objective value and the maximum violation versus t. Be sure to indicate on the plot the values of t for which \hat{x} is feasible, and those for which it is not.

Find a value of t for which \hat{x} is feasible, and gives minimum objective value, and note the associated upper bound U. Give the gap $U-L$ between the upper bound on p^{\star} and the lower bound on p^{\star}. If you define vectors obj and maxviol, you can find the upper bound as $U=\min (o b j(f i n d(m a x v i o l<=0)))$.
2. Three measures of the spread of a group of numbers. For $x \in \mathbf{R}^{n}$, we define three functions that measure the spread or width of the set of its elements (or coefficients). The first function is the spread, defined as

$$
\phi_{\mathrm{sprd}}(x)=\max _{i=1, \ldots, n} x_{i}-\min _{i=1, \ldots, n} x_{i} .
$$

This is the width of the smallest interval that contains all the elements of x.
The second function is the standard deviation, defined as

$$
\phi_{\mathrm{stdev}}(x)=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}\right)^{1 / 2} .
$$

This is the statistical standard deviation of a random variable that takes the values x_{1}, \ldots, x_{n}, each with probability $1 / n$.
The third function is the average absolute deviation from the median of the values:

$$
\phi_{\text {aamd }}(x)=(1 / n) \sum_{i=1}^{n}\left|x_{i}-\operatorname{med}(x)\right|,
$$

where $\operatorname{med}(x)$ denotes the median of the components of x, defined as follows. If $n=2 k-1$ is odd, then the median is defined as the value of middle entry when the components are sorted, i.e., $\operatorname{med}(x)=x_{[k]}$, the k th largest element among the values x_{1}, \ldots, x_{n}. If $n=2 k$ is even, we define the median as the average of the two middle values, i.e., $\operatorname{med}(x)=\left(x_{[k]}+x_{[k+1]}\right) / 2$.
Each of these functions measures the spread of the values of the entries of x; for example, each function is zero if and only if all components of x are equal, and each function is unaffected if a constant is added to each component of x.
Which of these three functions is convex? For each one, either show that it is convex, or give a counterexample showing it is not convex. By a counterexample, we mean a specific x and y such that Jensen's inequality fails, i.e., $\phi((x+y) / 2)>(\phi(x)+\phi(y)) / 2$.
3. Minimax rational fit to the exponential. (See exercise 6.9 of Convex Optimization.) We consider the specific problem instance with data

$$
t_{i}=-3+6(i-1) /(k-1), \quad y_{i}=e^{t_{i}}, \quad i=1, \ldots, k
$$

where $k=201$. (In other words, the data are obtained by uniformly sampling the exponential function over the interval $[-3,3]$.) Find a function of the form

$$
f(t)=\frac{a_{0}+a_{1} t+a_{2} t^{2}}{1+b_{1} t+b_{2} t^{2}}
$$

that minimizes $\max _{i=1, \ldots, k}\left|f\left(t_{i}\right)-y_{i}\right|$. (We require that $1+b_{1} t_{i}+b_{2} t_{i}^{2}>0$ for $i=$ $1, \ldots, k$.)
Find optimal values of $a_{0}, a_{1}, a_{2}, b_{1}, b_{2}$, and give the optimal objective value, computed to an accuracy of 0.001 . Plot the data and the optimal rational function fit on the same plot. On a different plot, give the fitting error, i.e., $f\left(t_{i}\right)-y_{i}$.
Hint. You can use strcmp(cvx_status, 'Solved'), after cvx_end, to check if a feasibility problem is feasible.
4. Complex least-norm problem. We consider the complex least ℓ_{p}-norm problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{p} \\
\text { subject to } & A x=b,
\end{array}
$$

where $A \in \mathbf{C}^{m \times n}, b \in \mathbf{C}^{m}$, and the variable is $x \in \mathbf{C}^{n}$. Here $\|\cdot\|_{p}$ denotes the ℓ_{p}-norm on \mathbf{C}^{n}, defined as

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for $p \geq 1$, and $\|x\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|$. We assume A is full rank, and $m<n$.
(a) Formulate the complex least ℓ_{2}-norm problem as a least ℓ_{2}-norm problem with real problem data and variable. Hint. Use $z=(\Re x, \Im x) \in \mathbf{R}^{2 n}$ as the variable.
(b) Formulate the complex least ℓ_{∞}-norm problem as an SOCP.
(c) Solve a random instance of both problems with $m=30$ and $n=100$. To generate the matrix A, you can use the Matlab command $\mathrm{A}=\operatorname{randn}(\mathrm{m}, \mathrm{n})+\mathrm{i} * \operatorname{randn}(\mathrm{~m}, \mathrm{n})$. Similarly, use $b=\operatorname{randn}(m, 1)+i * r a n d n(m, 1)$ to generate the vector b. Use the Matlab command scatter to plot the optimal solutions of the two problems on the complex plane, and comment (briefly) on what you observe. You can solve the problems using the CVX functions norm ($x, 2$) and norm (x, inf), which are overloaded to handle complex arguments. To utilize this feature, you will need to declare variables to be complex in the variable statement. (In particular, you do not have to manually form or solve the SOCP from part (b).)

MIT OpenCourseWare
http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

