
Filter design 

FIR filters • 

• Chebychev design 

• linear phase filter design 

• equalizer design 

• filter magnitude specifications 
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FIR filters 

finite impulse response (FIR) filter: 

n−1

y(t) = 
�

hτu(t − τ), t ∈ Z 
τ=0 

(sequence) u : Z R is input signal • →
(sequence) y : Z R is output signal • →

• hi are called filter coefficients 

• n is filter order or length 
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filter frequency response: H : R C→

H(ω) = h0 + h1e 
−iω + + hn−1e 

−i(n−1)ω · · · 
n−1	 n−1

=
 ht cos tω + i
 ht sin tω

t=0	 t=0 

(EE tradition uses j = 
√
−1 instead of i)• 

•	 H is periodic and conjugate symmetric, so only need to know/specify 
for 0 ≤ ω ≤ π 

FIR filter design problem: choose h so it and H satisfy/optimize specs
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example: (lowpass) FIR filter, order n = 21


impulse response h:
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frequency response magnitude (i.e., H(ω) ):
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frequency response phase (i.e., � H(ω)): 
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Chebychev design


minimize max H(ω) − Hdes(ω)
ω∈[0,π]

|	 | 

•	 h is optimization variable 

Hdes : R C is (given) desired transfer function •	 →
•	 convex problem 

•	 can add constraints, e.g., |hi| ≤ 1 

sample (discretize) frequency: 

minimize max 
k=1,...,m 

|H(ωk) − Hdes(ωk)| 

•	 sample points 0 ≤ ω1 < · · · < ωm ≤ π are fixed (e.g., ωk = kπ/m) 

•	 m ≫ n (common rule-of-thumb: m = 15n) 

•	 yields approximation (relaxation) of problem above 
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Chebychev design via SOCP: 

minimize t 
subject to 

��A(k)h − b(k)
�� ≤ t, k = 1, . . . ,m 

where 

�
1 cos ωk cos(n−1)ωk 

� 
A(k) = 

· · ·

0 −sin ωk −sin(n−1)ωk· · · 

�
ℜHdes(ωk) 

� 
b(k) = ℑHdes(ωk) 

 
h0 

 

.h =  ..  
hn−1 
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Linear phase filters 

suppose 

n = 2N + 1 is odd • 
• impulse response is symmetric about midpoint: 

ht = hn−1−t, t = 0, . . . , n − 1 

then 

H(ω) = h0 + h1e 
−iω + + hn−1e 

−i(n−1)ω · · · 
= e −iNω (2h0 cos Nω + 2h1 cos(N−1)ω + + hN)· · · 
Δ −iNω = e H� (ω) 
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term e−iNω represents N -sample delay • 

• H� (ω) is real 

• |H(ω)| = |H� (ω)| 

• called linear phase filter ( � H(ω) is linear except for jumps of ±π) 
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Lowpass filter specifications


δ1


1/δ1


δ2 

ωp ωs π 
ω 

idea: 

• pass frequencies in passband [0, ωp] 

• block frequencies in stopband [ωs, π] 
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specifications: 

•	 maximum passband ripple (±20 log10 δ1 in dB): 

1/δ1 ≤ |H(ω)| ≤ δ1, 0 ≤ ω ≤ ωp 

•	 minimum stopband attenuation (−20 log10 δ2 in dB): 

|H(ω)| ≤ δ2, ωs ≤ ω ≤ π 
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Linear phase lowpass filter design 

• sample frequency 

•	 can assume wlog H� (0) > 0, so ripple spec is 

1/δ1 ≤ H� (ωk) ≤ δ1 

design for maximum stopband attenuation: 

minimize	 δ2 

subject to	 1/δ1 ≤ H� (ωk) ≤ δ1, 0 ≤ ωk ≤ ωp 

−δ2 ≤ H� (ωk) ≤ δ2, ωs ≤ ωk ≤ π 

Filter design 12 



• passband ripple δ1 is given 

• an LP in variables h, δ2 

• known (and used) since 1960’s 

• can add other constraints, e.g., |hi| ≤ α 

variations and extensions: 

• fix δ2, minimize δ1 (convex, but not LP) 

• fix δ1 and δ2, minimize ωs (quasiconvex) 

• fix δ1 and δ2, minimize order n (quasiconvex) 
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example 

• linear phase filter, n = 21 

• passband [0, 0.12π]; stopband [0.24π, π]


• max ripple δ1 = 1.012 (±0.1dB) 

• design for maximum stopband attenuation


impulse response h: 
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frequency response magnitude (i.e., H(ω) ):
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Equalizer design


G(ω)H(ω) 

equalization: given 

• G (unequalized frequency response) 

•	 Gdes (desired frequency response) 

Δ
design (FIR equalizer) H so that G� = GH ≈ Gdes 

common choice: Gdes(ω) = e−iDω (delay) • 
i.e., equalization is deconvolution (up to delay) 

• can add constraints on H, e.g., limits on |hi| or maxω |H(ω)| 
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Chebychev equalizer design: 

minimize max 
���G�(ω) − Gdes(ω)

���
ω∈[0,π] 

convex; SOCP after sampling frequency 
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�

time-domain equalization: optimize impulse response g̃ of equalized 
system 
e.g., with Gdes(ω) = e−iDω , 

�
1 t = D 

gdes(t) = 
0 t = D 

sample design: 
minimize maxt� g̃(t)=D | | 
subject to g̃(D) = 1


an LP • 
• can use 

�
t� g̃(t)2 or 

�
t� |g̃(t)|=D =D 
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extensions: 

• can impose (convex)	 constraints 

•	 can mix time- and frequency-domain specifications 

•	 can equalize multiple systems, i.e., choose H so 

G(k)H ≈ Gdes, k = 1, . . . , K 

•	 can equalize multi-input multi-output systems 
(i.e., G and H are matrices) 

•	 extends to multidimensional systems, e.g., image processing 
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Equalizer design example


unequalized system G is 10th order FIR:
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design 30th order FIR equalizer with G�(ω) ≈ e−i10ω 
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Chebychev equalizer design:


˜minimize max 
���G(ω) − e −i10ω

���
ω 

equalized system impulse response g̃
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equalized frequency response magnitude |G�|
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time-domain equalizer design:


minimize max g̃(t)
=10 t�

| | 

equalized system impulse response g̃
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equalized frequency response magnitude |G�|
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Filter magnitude specifications


transfer function magnitude spec has form 

L(ω) ≤ |H(ω)| ≤ U(ω), ω ∈ [0, π] 

where L, U : R R+ are given →

lower bound is not convex in filter coefficients h• 

• arises in many applications, e.g., audio, spectrum shaping 

• can change variables to solve via convex optimization 
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Autocorrelation coefficients


autocorrelation coefficients associated with impulse response 
h = (h0, . . . , hn−1) ∈ Rn are 

rt = 
�

hτhτ+t 

τ 

(we take hk = 0 for k < 0 or k ≥ n) 

• rt = r−t; rt = 0 for |t| ≥ n 

• hence suffices to specify r = (r0, . . . , rn−1) ∈ Rn 
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�


Fourier transform of autocorrelation coefficients is


n−1� 

τ =1 t

always have R(ω) 0 for all ω≥• 

can express magnitude specification as • 

−iωτ
 2
R(ω) =
 2rt cos ωt = H(ω)
|
 |
e
 rτ = r0 +


L(ω)2 ≤ R(ω) ≤ U(ω)2 , ω ∈ [0, π] 

. . . convex in r 
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Spectral factorization


question: when is r ∈ Rn the autocorrelation coefficients of some h ∈ Rn? 

answer: (spectral factorization theorem) if and only if R(ω) ≥ 0 for all ω 

•	 spectral factorization condition is convex in r 

many algorithms for spectral factorization, i.e., finding an h s.t. •	
R(ω) = |H(ω)|2 

magnitude design via autocorrelation coefficients: 

•	 use r as variable (instead of h) 

• add spectral factorization condition R(ω) ≥ 0 for all ω 

• optimize over r 

•	 use spectral factorization to recover h 
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log-Chebychev magnitude design


choose h to minimize 

max 20 log10 H(ω) − 20 log10 D(ω)
ω 

| | |	 | 

•	 D is desired transfer function magnitude 
(D(ω) > 0 for all ω) 

•	 find minimax logarithmic (dB) fit 

reformulate as 

minimize t 
subject to D(ω)2/t ≤ R(ω) ≤ tD(ω)2 , 0 ≤ ω ≤ π 

•	 convex in variables r, t 

•	 constraint includes spectral factorization condition 
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example: 1/f (pink noise) filter (i.e., D(ω) = 1/
√

ω), n = 50, 
log-Chebychev design over 0.01π ≤ ω ≤ π 

|H
(ω

)|
 2


1
10

0
10

−1
10

−2
10

−1 0
10 10

ω 

optimal fit: ±0.5dB 
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