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ℓ1-norm heuristics for cardinality problems 

•	 cardinality problems arise often, but are hard to solve exactly 

•	 a simple heuristic, that relies on ℓ1-norm, seems to work well 

•	 used for many years, in many fields 

–	 sparse design 
–	 LASSO, robust estimation in statistics 
–	 support vector machine (SVM) in machine learning 
–	 total variation reconstruction in signal processing, geophysics 
–	 compressed sensing 

•	 new theoretical results guarantee the method works, at least for a few 
problems 
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Cardinality


•	 the cardinality of x ∈ Rn, denoted card(x), is the number of nonzero 
components of x 

0 x = 0 
•	 card is separable; for scalar x, card(x) = 

1 x �= 0 

•	 card is quasiconcave on Rn (but not Rn) since + 

card(x + y) ≥ min{card(x), card(y)} 

holds for x, y � 0 

•	 but otherwise has no convexity properties 

•	 arises in many problems 
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General convex-cardinality problems 

a convex-cardinality problem is one that would be convex, except for 
appearance of card in objective or constraints 

examples (with C, f convex): 

• convex minimum cardinality problem: 

minimize card(x) 
subject to x ∈ C 

• convex problem with cardinality constraint: 

minimize f(x)

subject to x ∈ C, card(x) ≤ k
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Solving convex-cardinality problems 

convex-cardinality problem with x ∈ Rn 

•	 if we fix the sparsity pattern of x (i.e., which entries are zero/nonzero) 
we get a convex problem 

•	 by solving 2n convex problems associated with all possible sparsity 
patterns, we can solve convex-cardinality problem 
(possibly practical for n ≤ 10; not practical for n > 15 or so . . . ) 

•	 general convex-cardinality problem is (NP-) hard 

•	 can solve globally by branch-and-bound 

–	 can work for particular problem instances (with some luck) 
–	 in worst case reduces to checking all (or many of) 2n sparsity patterns 
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Boolean LP as convex-cardinality problem


• Boolean LP: 
minimize cT x 
subject to Ax � b, xi ∈ {0, 1} 

includes many famous (hard) problems, e.g., 3-SAT, traveling salesman 

•	 can be expressed as 

minimize cT x 
subject to Ax � b, card(x) + card(1 − x) ≤ n


since card(x) + card(1 − x) ≤ n ⇐⇒ xi ∈ {0, 1}


• conclusion: general convex-cardinality problem is hard 
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Sparse design


minimize card(x) 
subject to x ∈ C 

•	 find sparsest design vector x that satisfies a set of specifications 

•	 zero values of x simplify design, or correspond to components that 
aren’t even needed 

•	 examples: 

–	 FIR filter design (zero coefficients reduce required hardware) 
–	 antenna array beamforming (zero coefficients correspond to unneeded 

antenna elements) 
–	 truss design (zero coefficients correspond to bars that are not needed) 
–	 wire sizing (zero coefficients correspond to wires that are not needed) 

Prof. S. Boyd, EE364b, Stanford University 6 



� � 

Sparse modeling / regressor selection


fit vector b ∈ Rm as a linear combination of k regressors (chosen from n 
possible regressors) 

minimize �Ax − b�2 

subject to card(x) ≤ k 

• gives k-term model 

• chooses subset of k regressors that (together) best fit or explain b 

n 
• can solve (in principle) by trying all choices 

k 

• variations: 

– minimize card(x) subject to �Ax − b�2 ≤ ǫ 
– minimize �Ax − b�2 + λ card(x) 
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Sparse signal reconstruction


• estimate signal x, given 

– noisy measurement y = Ax+ v, v ∼ N (0, σ2I) (A is known; v is not) 
– prior information card(x) ≤ k 

• maximum likelihood estimate x̂ml is solution of 

minimize �Ax − y�2 

subject to card(x) ≤ k 
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Estimation with outliers 

• we have measurements yi = aT
i x + vi + wi, i = 1, . . . , m 

• noises vi ∼ N (0, σ2) are independent 

• only assumption on w is sparsity: card(w) ≤ k 

• B = {i | � 0} is set of bad measurements or outliers
wi = 

• maximum likelihood estimate of x found by solving 

minimize 
� 

i 6∈B(yi − ai
T x)2 

subject to |B| ≤ k 

with variables x and B ⊆ {1, . . . , m} 

• equivalent to 
minimize �y − Ax − w�2

2 

subject to card(w) ≤ k 
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Minimum number of violations


•	 set of convex inequalities 

f1(x) ≤ 0, . . . , fm(x) ≤ 0, x ∈ C 

•	 choose x to minimize the number of violated inequalities: 

minimize card(t) 
subject to fi(x) ≤ ti, i = 1, . . . , m 

x ∈ C, t ≥ 0 

•	 determining whether zero inequalities can be violated is (easy) convex 
feasibility problem 
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Linear classifier with fewest errors


• given data	 (x1, y1), . . . , (xm, ym) ∈ Rn × {−1, 1} 

• we seek linear (affine) classifier y ≈ sign(wT x + v) 

• classification error corresponds to yi(w
T x + v) ≤ 0 

•	 to find w, v that give fewest classification errors: 

minimize card(t) 
subject to yi(w

T xi + v) + ti ≥ 1, i = 1, . . . ,m


with variables w, v, t (we use homogeneity in w, v here)
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Smallest set of mutually infeasible inequalities


•	 given a set of mutually infeasible convex inequalities 
f1(x) ≤ 0, . . . , fm(x) ≤ 0 

•	 find smallest (cardinality) subset of these that is infeasible 

m •	 certificate of infeasibility is g(λ) = infx( i=1 λifi(x)) ≥ 1, λ � 0 

•	 to find smallest cardinality infeasible subset, we solve 

minimize card(λ) 
subject to g(λ) ≥ 1, λ � 0


(assuming some constraint qualifications)


Prof. S. Boyd, EE364b, Stanford University 12 



Portfolio investment with linear and fixed costs 

• we use budget B to purchase (dollar) amount xi ≥ 0 of stock i 

• trading fee is fixed cost plus linear cost: β card(x) + αT x 

• budget constraint is 1T x + β card(x) + αT x ≤ B 

• mean return on investment is µT x; variance is xT Σx 

• minimize investment variance (risk) with mean return ≥ Rmin: 

minimize xT Σx 
subject to µT x ≥ Rmin, x � 0 

1T x + β card(x) + αT x ≤ B 
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Piecewise constant fitting


• fit corrupted xcor by a piecewise constant signal x̂ with k or fewer jumps 

• problem is convex once location (indices) of jumps are fixed 

• x̂ is piecewise constant with ≤ k jumps ⇐⇒ card(Dx̂) ≤ k, where 

  

1 −1 
 1 −1  

∈ R(n−1)×n 
 D = 
 

. . . . . .  

1 −1 

• as convex-cardinality problem: 

minimize �x̂ − xcor�2 

subject to card(Dx̂) ≤ k 
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Piecewise linear fitting


• fit xcor by a piecewise linear signal x̂ with k or fewer kinks 

•	 as convex-cardinality problem: 

minimize �x̂ − xcor�2 

subject to card(∇x̂) ≤ k 

where 
  

−1 2 −1 
 −1 2 −1 

	 ∇ = 
 

. . . . . .	 . . .  

−1 2 −1 
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ℓ1-norm heuristic


•	 replace card(z) with γ�z�1, or add regularization term γ�z�1 to 
objective 

•	 γ > 0 is parameter used to achieve desired sparsity 
(when card appears in constraint, or as term in objective) 

•	 more sophisticated versions use i wi|zi| or i wi(zi)+ + i vi(zi)−, 
where w, v are positive weights 
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Example: Minimum cardinality problem 

•	 start with (hard) minimum cardinality problem 

minimize card(x) 
subject to x ∈ C


(C convex)


• apply heuristic to get (easy) ℓ1-norm minimization problem 

minimize �x�1 

subject to x ∈ C 
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Example: Cardinality constrained problem


• start with (hard) cardinality constrained problem (f , C convex) 

minimize f(x)

subject to x ∈ C, card(x) ≤ k


• apply heuristic to get (easy) ℓ1-constrained problem 

minimize f(x)

subject to x ∈ C, �x�1 ≤ β


or ℓ1-regularized problem 

minimize f(x) + γ�x�1 

subject to x ∈ C 

β, γ adjusted so that card(x) ≤ k 
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Polishing


•	 use ℓ1 heuristic to find x̂ with required sparsity 

•	 fix the sparsity pattern of x̂

•	 re-solve the (convex) optimization problem with this sparsity pattern to 
obtain final (heuristic) solution 
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Interpretation as convex relaxation


• start with 

minimize card(x)

subject to x ∈ C, �x�∞ ≤ R


• equivalent to mixed Boolean convex problem 

minimize 1T z 
subject to |xi| ≤ Rzi, i = 1, . . . , n 

x ∈ C, zi ∈ {0, 1}, i = 1, . . . , n 

with variables x, z 

Prof. S. Boyd, EE364b, Stanford University 20 



• now relax	 zi ∈ {0, 1} to zi ∈ [0, 1] to obtain 

minimize	 1T z 
subject to	 |xi| ≤ Rzi, i = 1, . . . , n 

x ∈ C 
0 ≤ zi ≤ 1, i = 1, . . . , n 

which is equivalent to 

minimize (1/R)�x�1 

subject to x ∈ C 

the ℓ1 heuristic 

• optimal value of this problem is lower bound on original problem
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Interpretation via convex envelope


•	 convex envelope f env of a function f on set C is the largest convex 
function that is an underestimator of f on C 

•	 epi(f env) = Co(epi(f)) 

•	 f env = (f∗)∗ (with some technical conditions) 

•	 for x scalar, |x| is the convex envelope of card(x) on [−1, 1] 

•	 for x ∈ Rn scalar, (1/R)�x�1 is convex envelope of card(x) on 
{z | �z�∞ ≤ R} 
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Weighted and asymmetric ℓ1 heuristics 

•	 minimize card(x) over convex set C 

•	 suppose we know lower and upper bounds on xi over C 

x ∈ C =⇒ li ≤ xi ≤ ui 

(best values for these can be found by solving 2n convex problems)


•	 if ui < 0 or li > 0, then card(xi) = 1 (i.e., xi �= 0) for all x ∈ C 

•	 assuming li < 0, ui > 0, convex relaxation and convex envelope 
interpretations suggest using 

n	 � � 

�	 (xi)+ (xi)− 
+ 

ui −li
i=1 

as surrogate (and also lower bound) for card(x) 
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Regressor selection


minimize �Ax − b�2 

subject to card(x) ≤ k 

•	 heuristic: 

–	 minimize �Ax − b�2 + γ�x�1 

–	 find smallest value of γ that gives card(x) ≤ k 
–	 fix associated sparsity pattern (i.e., subset of selected regressors) and 

find x that minimizes �Ax − b�2 
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Example (6.4 in BV book) 

• A ∈ R10×20 , x ∈ R20 , b ∈ R10 

• dashed curve: exact optimal (via enumeration) 

• solid curve: ℓ1 heuristic with polishing 
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Sparse signal reconstruction


•	 convex-cardinality problem: 

minimize �Ax − y�2 

subject to card(x) ≤ k 

•	 ℓ1 heuristic: 
minimize �Ax − y�2


subject to �x�1 ≤ β


(called LASSO)


•	 another form: minimize �Ax − y�2 + γ�x�1 

(called basis pursuit denoising) 
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Example


•	 signal x ∈ Rn with n = 1000, card(x) = 30 

•	 m = 200 (random) noisy measurements: y = Ax + v, v ∼ N (0, σ21), 
Aij ∼ N (0, 1) 

•	 left: original; right: ℓ1 reconstruction with γ = 10−3 
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• ℓ2 reconstruction; minimizes �Ax − y�2 + γ�x�2, where γ = 10−3 

• left: original; right: ℓ2 reconstruction 
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Some recent theoretical results


•	 suppose y = Ax, A ∈ Rm×n , card(x) ≤ k 

•	 to reconstruct x, clearly need m ≥ k 

•	 if m ≥ n and A is full rank, we can reconstruct x without cardinality 
assumption 

•	 when does the ℓ1 heuristic (minimizing �x�1 subject to Ax = y) 
reconstruct x (exactly)? 
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recent results by Candès, Donoho, Romberg, Tao, . . . 

•	 (for some choices of A) if m ≥ (C log n)k, ℓ1 heuristic reconstructs x 
exactly, with overwhelming probability 

•	 C is absolute constant; valid A’s include 

–	 Aij ∼ N (0, σ2) 
–	 Ax gives Fourier transform of x at m frequencies, chosen from 

uniform distribution 
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