ℓ_{1}-norm Methods for
 Convex-Cardinality Problems

 Part II

 Part II}

- total variation
- iterated weighted ℓ_{1} heuristic
- matrix rank constraints

Total variation reconstruction

- fit $x_{\text {cor }}$ with piecewise constant \hat{x}, no more than k jumps
- convex-cardinality problem: minimize $\left\|\hat{x}-x_{\text {cor }}\right\|_{2}$ subject to $\operatorname{card}(D x) \leq k$ (D is first order difference matrix)
- heuristic: minimize $\left\|\hat{x}-x_{\text {cor }}\right\|_{2}+\gamma\|D x\|_{1}$; vary γ to adjust number of jumps
- $\|D x\|_{1}$ is total variation of signal \hat{x}
- method is called total variation reconstruction
- unlike ℓ_{2} based reconstruction, TVR filters high frequency noise out while preserving sharp jumps

Example (§6.3.3 in BV book)

signal $x \in \mathbf{R}^{2000}$ and corrupted signal $x_{\text {cor }} \in \mathbf{R}^{2000}$

Total variation reconstruction

for three values of γ

ℓ_{2} reconstruction

for three values of γ

Example: 2D total variation reconstruction

- $x \in \mathbf{R}^{n}$ are values of pixels on $N \times N$ grid ($N=31$, so $n=961$)
- assumption: x has relatively few big changes in value (i.e., boundaries)
- we have $m=120$ linear measurements, $y=F x\left(F_{i j} \sim \mathcal{N}(0,1)\right)$
- as convex-cardinality problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{card}\left(x_{i, j}-x_{i+1, j}\right)+\operatorname{card}\left(x_{i, j}-x_{i, j+1}\right) \\
\text { subject to } & y=F x
\end{array}
$$

- ℓ_{1} heuristic (objective is a 2D version of total variation)

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i, ~}\left|x_{i, j}-x_{i+1, j}\right|+\sum\left|x_{i, j}-x_{i, j+1}\right| \\
\text { subject to } & y=F x
\end{array}
$$

TV reconstruction

TV reconstruction

.. . not bad for $8 \times$ more variables than measurements!

ℓ_{2} reconstruction

ℓ_{2} reconstruction

... this is what you'd expect with $8 \times$ more variables than measurements

Iterated weighted ℓ_{1} heuristic

- to minimize $\operatorname{card}(x)$ over $x \in \mathcal{C}$

$$
\begin{aligned}
& w:=1 \\
& \text { repeat } \\
& \quad \text { minimize }\|\operatorname{diag}(w) x\|_{1} \text { over } x \in \mathcal{C} \\
& \quad w_{i}:=1 /\left(\epsilon+\left|x_{i}\right|\right)
\end{aligned}
$$

- first iteration is basic ℓ_{1} heuristic
- increases relative weight on small x_{i}
- typically converges in 5 or fewer steps
- often gives a modest improvement (i.e., reduction in $\operatorname{card}(x)$) over basic ℓ_{1} heuristic

Interpretation

- wlog we can take $x \succeq 0$ (by writing $x=x_{+}-x_{-}, x_{+}, x_{-} \succeq 0$, and replacing $\operatorname{card}(x)$ with $\left.\operatorname{card}\left(x_{+}\right)+\boldsymbol{\operatorname { c a r d }}\left(x_{-}\right)\right)$
- we'll use approximation $\operatorname{card}(z) \approx \log (1+z / \epsilon)$, where $\epsilon>0, z \in \mathbf{R}_{+}$
- using this approximation, we get (nonconvex) problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} \log \left(1+x_{i} / \epsilon\right) \\
\text { subject to } & x \in \mathcal{C}, \quad x \succeq 0
\end{array}
$$

- we'll find a local solution by linearizing objective at current point,

$$
\sum_{i=1}^{n} \log \left(1+x_{i} / \epsilon\right) \approx \sum_{i=1}^{n} \log \left(1+x_{i}^{(k)} / \epsilon\right)+\sum_{i=1}^{n} \frac{x_{i}-x_{i}^{(k)}}{\epsilon+x_{i}^{(k)}}
$$

and solving resulting convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} w_{i} x_{i} \\
\text { subject to } & x \in \mathcal{C}, \quad x \succeq 0
\end{array}
$$

with $w_{i}=1 /\left(\epsilon+x_{i}\right)$, to get next iterate

- repeat until convergence to get a local solution

Sparse solution of linear inequalities

- minimize $\mathbf{c a r d}(x)$ over polyhedron $\{x \mid A x \preceq b\}, A \in \mathbf{R}^{100 \times 50}$
- ℓ_{1} heuristic finds $x \in \mathbf{R}^{50}$ with $\operatorname{card}(x)=44$
- iterated weighted ℓ_{1} heuristic finds x with $\operatorname{card}(x)=36$ (global solution, via branch \& bound, is $\operatorname{card}(x)=32$)

Detecting changes in time series model

- $\mathrm{AR}(2)$ scalar time-series model

$$
y(t+2)=a(t) y(t+1)+b(t) y(t)+v(t), \quad v(t) \operatorname{IID} \mathcal{N}\left(0,0.5^{2}\right)
$$

- assumption: $a(t)$ and $b(t)$ are piecewise constant, change infrequently
- given $y(t), t=1, \ldots, T$, estimate $a(t), b(t), t=1, \ldots, T-2$
- heuristic: minimize over variables $a(t), b(t), t=1, \ldots, T-1$

$$
\begin{aligned}
& \sum_{t=1}^{T-2}(y(t+2)-a(t) y(t+1)-b(t) y(t))^{2} \\
& \quad+\gamma \sum_{t=1}^{T-2}(|a(t+1)-a(t)|+|b(t+1)-b(t)|)
\end{aligned}
$$

- vary γ to trade off fit versus number of changes in a, b

Time series and true coefficients

TV heuristic and iterated TV heuristic

left: TV with $\gamma=10 ; \quad$ right: iterated TV, 5 iterations, $\epsilon=0.005$

Extension to matrices

- Rank is natural analog of card for matrices
- convex-rank problem: convex, except for Rank in objective or constraints
- rank problem reduces to card problem when matrices are diagonal: $\operatorname{Rank}(\operatorname{diag}(x))=\boldsymbol{\operatorname { c a r d }}(x)$
- analog of ℓ_{1} heuristic: use nuclear norm, $\|X\|_{*}=\sum_{i} \sigma_{i}(X)$ (sum of singular values; dual of spectral norm)
- for $X \succeq 0$, reduces to $\operatorname{Tr} X$ (for $x \succeq 0,\|x\|_{1}$ reduces to $\mathbf{1}^{T} x$)

Factor modeling

- given matrix $\Sigma \in \mathbf{S}_{+}^{n}$, find approximation of form $\hat{\Sigma}=F F^{T}+D$, where $F \in \mathbf{R}^{n \times r}, D$ is diagonal nonnegative
- gives underlying factor model (with r factors)

$$
x=F z+v, \quad v \sim \mathcal{N}(0, D), \quad z \sim \mathcal{N}(0, I)
$$

- model with fewest factors:

$$
\begin{array}{ll}
\text { minimize } & \text { Rank } X \\
\text { subject to } & X \succeq 0, \quad D \succeq 0 \text { diagonal } \\
& X+D \in \mathcal{C}
\end{array}
$$

with variables $D, X \in \mathbf{S}^{n}$
\mathcal{C} is convex set of acceptable approximations to Σ

- e.g., via KL divergence

$$
\mathcal{C}=\left\{\hat{\Sigma} \mid-\log \operatorname{det}\left(\Sigma^{-1 / 2} \hat{\Sigma} \Sigma^{-1 / 2}+\operatorname{Tr}\left(\Sigma^{-1 / 2} \hat{\Sigma} \Sigma^{-1 / 2}\right)-n \leq \epsilon\right\}\right.
$$

- trace heuristic:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} X \\
\text { subject to } & X \succeq 0, \quad D \succeq 0 \text { diagonal } \\
& X+D \in \mathcal{C}
\end{array}
$$

with variables $d \in \mathbf{R}^{n}, X \in \mathbf{S}^{n}$

Example

- $x=F z+v, z \sim \mathcal{N}(0, I), v \sim \mathcal{N}(0, D), D$ diagonal; $F \in \mathbf{R}^{20 \times 3}$
- Σ is empirical covariance matrix from $N=3000$ samples
- set of acceptable approximations

$$
\mathcal{C}=\left\{\hat{\Sigma} \mid\left\|\Sigma^{-1 / 2}(\hat{\Sigma}-\Sigma) \Sigma^{-1 / 2}\right\| \leq \beta\right\}
$$

- trace heuristic

```
minimize Tr X
subject to }X\succeq0,\quadd\succeq
    | \Sigma '1/2}(X+\operatorname{diag}(d)-\Sigma)\mp@subsup{\Sigma}{}{-1/2}|\leq
```


Trace approximation results

- for $\beta=0.1357$ (knee of the tradeoff curve) we find
$-\angle\left(\operatorname{range}(X)\right.$, range $\left.\left(F F^{T}\right)\right)=6.8^{\circ}$
$-\|d-\operatorname{diag}(D)\| /\|\operatorname{diag}(D)\|=0.07$
- i.e., we have recovered the factor model from the empirical covariance

MIT OpenCourseWare
|http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

