
MIT OpenCourseWare 
http://ocw.mit.edu 

6.080 / 6.089 Great Ideas in Theoretical Computer Science 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.080/6.089 GITCS 1 April 2008 

Lecture 14 
Lecturer: Scott Aaronson Scribe: Geoffrey Thomas 

Recap 

Randomness can make possible computation tasks that are provably impossible without it. Cryp
tography is a good example: if the adversary can predict the way you generate your keys, you 
cannot encrypt messages. Randomness is also good for breaking symmetry and making arbitrary 
choices. 

We also have randomized algorithms. For example, to determine the equality of two polynomials 
given in nonstandard form, e.g., 

(1 + x)2 = 1 + 3x + 3x 2 + x 3 

pick a few random values and see if they evaluate to the same thing. Since two different polynomials 
of degree d can only be equal at up to d points per the Fundamental Theorem of Algebra, after 
evaluating the polynomials at very few values, we can know with high probability whether they are 
equal. 

Can we “derandomize” any randomized algorithm, i.e., can we convert it into a deterministic 
algorithm with roughly the same efficiency? This (formalized below as P versus BPP) is one of 
the central open questions of theoretical computer science. 

Useful Probability Formulas 

Union bound: Pr [A ∨ B] ≤ Pr [A] + Pr [B]• 

Linearity of expectation: E [X + Y ] = E [X]+E [Y ] whether or not X and Y are independent • 

Markov’s inequality: • 
1

Pr [X ≥ kE [X]] ≤ 
k 

This is true for any distribution X that takes only non-negative values. To prove it: suppose 
it were false. Then the contribution to E [X] from X greater than kE [X] would be so big as 
to increase the expectation. 

Complexity 

Can we formalize the concept of a problem that can be solved efficiently with a randomized algo
rithm? There are several ways to do this. 

The complexity class BPP (Bounded-Error Probabilistic Polynomial-Time) is the class of lan
guages L ⊆ {0, 1}∗ for which there exists a polynomial time algorithm M(x, r) such that for all 
inputs x, 

if x ∈ L, then M(x, r) accepts with probability ≥ 2 • 3 

14-1 



� � � � � � 

� � � � 

� � 

•
 if x �∈ L, then M(x, r) accepts with probability ≤
 1 
3 .


Here r is a random string of polynomial length.

and

you want more accurate probabilities, you can use amplification: run the algorithm many times 
and take the majority answer. By combining many noisy answers, you can compute a single more 
accurate answer. So intuitively, it shouldn’t matter what probabilities we use to define BPP, since 
we can amplify any success probability to any other with a constant number of repetitions. 

But can we be more precise, and bound how many repetitions are needed to amplify a given 
success probability p to another probability q? This is basically a statistics problem, involving 
the tails of binomial distributions. Computer scientists like to solve such problems using a rough-
and-ready yet versatile tool called the Chernoff bound. For n fair coin flips X1 . . . Xn ∈ {0, 1}, let 

By linearity of expectation, E [X] = n The Chernoff bound says that for all 2

33Why
 ? Well, they’re just two nice numbers that are separated from each other. If


X = X1 + + Xn.· · · .

constants a > 0, �� � � 

Pr ��X − 
n �� > an ≥ ca

n 

2 
for some constant ca < 1. In other words, if we repeat our BPP algorithm n times, the probability 
that the majority of the answers will be wrong decreases exponentially in n. 

To prove the Chernoff bound, the key idea is to bound the expectation not of X, but of cX for 
some constant c: 

E c X = E c X1+···+Xn 

= E c X1 c Xn � �· · · � � 
= E c X1 E c Xn � �· · · 

1 + c n 

= 
2 

Here, of course, we’ve made crucial use of the fact that the Xi’s are independent. Now by Markov’s 
inequality, 

1 + c n 1
Pr c X ≥ k 

2 
≤ 

k 

1 + c 1
Pr X ≥ log k + n log

2 
≤ 

kc c 

We can then choose a suitable constant c > 1 to optimize the bound; the details get a bit messy. But 
you can see the basic point: as we increase d := logc k—which intuitively measures the deviation of 
X from the mean—the probability of X deviating by that amount decreases exponentially with d. 

As a side note, can we amplify any difference in probabilities—including, say, a difference 
between 1/2 − 2−n and 1/2 + 2−n? Yes, but in this case you can work out that we’ll need an 
exponential number of repetitions to achieve constant confidence. On the other hand, so long as 
the inverse of the difference between the two acceptance probabilities is at most a polynomial, we 
can amplify the difference in polynomial time. 

Other Probabilistic Complexity Classes 

BPP algorithms are “two-sided tests”: they can give errors in both directions. Algorithms like 
our polynomial-equality test can give false positives but never false negatives, and are therefore 

14-2


1 2 



called “one-sided tests.” To formalize one-sided tests, we define another complexity class RP 
(Randomized Polynomial-Time). RP is the class of all languages L ⊆ {0, 1}∗ for which there exists 
a polynomial time algorithm M(x, r) such that for all inputs x, 

•
 If x ∈ L, then M(x, r) accepts with probability ≥
 1 
2 .


• If x �∈ L, then M(x, r) always rejects regardless of r. 

The polynomial-nonequality problem is in RP, or equivalently, the polynomial-equality problem is 
in coRP. 

P is in RP, coRP and BPP. RP and coRP are in BPP, because we can just amplify an RP 
1 3 2algorithm once and reject with probability 0 ≤


is also called ZPP, for Zero-Error Probabilistic Polynomial-Time.

and accept with probability
 RP ∩ coRP 

It might seem obvious that 
≥
 .
3 4 3

ZPP = P, but this is not yet known to be true. For even given both RP and coRP algorithms for 
a problem, you might get unlucky and always get rejections from the RP algorithm and acceptances 
from the coRP algorithm. 

RP is in NP: the polynomial certificate that some x ∈ L is simply any of the random values 
r that cause the RP algorithm to accept. (Similarly, coRP is in coNP.) BPP is in PSPACE 
because you can try every r and count how many accept and how many reject. 

Whether BPP is in NP is an open question. (Sure, you can generate a polynomial number 
of “random” numbers r to feed to a deterministic verifier, but how do you convince the verifier 
that these numbers are in fact random rather than cherry-picked to give the answer you want?) 
Sipser, Gács, and Lautemann found that BPP ⊆ NPNP, placing BPP in the so-called polynomial 
hierarchy (NP, NPNP , NPNPNP 

, . . . ). 
An even more amazing possibility than BPP ⊆ NP would be BPP = P: that is, that every 

randomized algorithm could be derandomized. Nevertheless, the consensus on this question has 
changed over time, and today most theoretical computer scientists believe that BPP = P, even 
though we seem far from being able to prove it. 

Of the several recent pieces of evidence that point toward this conclusion, let us mention just 
one. Consider the following conjecture: 

nThere is a problem solvable by a uniform algorithm in 2n time, which requires c
circuit size (for some c > 1) even if we allow nonuniform algorithms. 

This seems like a very reasonable conjecture, since it is not at all clear why nonuniformity 
(the ability to use a different algorithm for each input size) should help in simulating arbitrary 
exponential-time Turing machines. 

In 1997, Impagliazzo and Wigderson proved that if the above conjecture holds, then P = 
BPP. Intuitively, this is because you could use the hard problem from the conjecture to create 
a pseudorandom generator, which would be powerful enough to derandomize any BPP algorithm. 
We’ll say more about pseudorandom generators in the next part of the course. 

14-3





