
6.087 Lecture 1 – January 11, 2010

Introduction to C

Writing C Programs

Our First C Program

1

1

What is C?

• Dennis Ritchie – AT&T Bell
Laboratories – 1972

• 16-bit DEC PDP-11
computer (right)

• Widely used today
• extends to newer system

architectures
• efficiency/performance
• low-level access

Features of C

C features:
• Few keywords
• Structures, unions – compound data types
• Pointers – memory, arrays
• External standard library – I/O, other facilities
• Compiles to native code
• Macro preprocessor

2

Versions of C

Evolved over the years:
1972 – C invented •

•	 1978 – The C Programming Language published; first
specification of language

•	 1989 – C89 standard (known as ANSI C or Standard C)
•	 1990 – ANSI C adopted by ISO, known as C90

1999 – C99 standard
•

•	 mostly backward-compatible
• not completely implemented in many compilers

2007 – work on new C standard C1X announced •

In this course: ANSI/ISO C (C89/C90)

3

What is C used for?

Systems programming:
•	 OSes, like Linux
•	 microcontrollers: automobiles and airplanes
•	 embedded processors: phones, portable electronics, etc.
•	 DSP processors: digital audio and TV systems

. . .
•

4

C vs. related languages

•	 More recent derivatives: C++, Objective C, C#
•	 Influenced: Java, Perl, Python (quite different)

C lacks: •

•	 exceptions
•	 range-checking
• garbage collection

• object-oriented programming

•	 polymorphism

. . .
•

Low-level language faster code (usually) •	 ⇒

5

Warning: low-level language!

Inherently unsafe:
•	 No range checking
•	 Limited type safety at compile time
•	 No type checking at runtime

Handle with care.
•	 Always run in a debugger like gdb (more later. . .)

Never run as root•

Never test code on the Athena servers •

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

6

1

1

6.087 Lecture 1 – January 11, 2010

Introduction to C

Writing C Programs

Our First C Program

7

Editing C code

.c extension •

• Editable directly

More later. . . •

7

Compiling a program

•	 gcc (included with most Linux distributions): compiler
.o extension •

•	 omitted for common programs like gcc

8

More about gcc

• Run gcc:

athena% gcc -Wall infilename.c -o
outfilename.o

• -Wall enables most compiler warnings
• More complicated forms exist

• multiple source files
• auxiliary directories

• optimization, linking

• Embed debugging info and disable optimization:

athena% gcc -g -O0 -Wall infilename.c -o
outfilename.o

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

9

1

1

Debugging

Figure: gdb: command-line debugger

10

Using gdb

Some useful commands:
•	 break linenumber – create breakpoint at specified line
•	 break file:linenumber – create breakpoint at line in

file
•	 run – run program

c – continue execution
•

next – execute next line •

•	 step – execute next line or step into function
•	 quit – quit gdb

•	 print expression – print current value of the specified
expression

•	 help command – in-program help

11

file:linenumber

Memory debugging

Figure: valgrind: diagnose memory-related problems

12

The IDE – all-in-one solution

•	 Popular IDEs: Eclipse (CDT), Microsoft Visual C++
(Express Edition), KDevelop, Xcode, . . .

•	 Integrated editor with compiler, debugger
•	 Very convenient for larger programs

Courtesy of The Eclipse Foundation. Used with permission.

13

Using Eclipse

•	 Need Eclipse CDT for C programs (see
http://www.eclipse.org/cdt/)

•	 Use New > C Project
•	 choose “Hello World ANSI C Project” for simple project
•	 “Linux GCC toolchain” sets up gcc and gdb (must be

installed separately)

•	 Recommended for final project

14

http://www.eclipse.org/cdt/

6.087 Lecture 1 – January 11, 2010

Introduction to C

Writing C Programs

Our First C Program

15

Hello, 6.087 students

•	 In style of “Hello, world!”
.c file structure •

•	 Syntax: comments, macros, basic declarations
•	 The main() function and function structure
•	 Expressions, order-of-operations
•	 Basic console I/O (puts(), etc.)

15

Structure of a .c file

/* Begin with comments about file contents */

Insert #include statements and preprocessor
definitions

Function prototypes and variable declarations

Define main() function
{
Function body

}

Define other function
{
Function body

}
. . .

16

Comments

•	 Comments: /∗ this is a simple comment ∗/

•	 Can span multiple lines

/ ∗	 This comment

spans

m u l t i p l e l i n e s ∗ /

•	 Completely ignored by compiler
•	 Can appear almost anywhere

/ ∗	 h e l l o . c −− our f i r s t C program

Created by Danie l Wel ler , 01/11/2010 ∗ /

17

The #include macro

•	 Header files: constants, functions, other declarations
#include <stdio.h> – read the contents of the header file •

stdio.h

• stdio.h: standard I/O functions for console, files

/ ∗ h e l l o . c −− our f i r s t C program

Created by Danie l Wel ler , 01/11/2010 ∗ /

#include < s t d i o . h> / ∗ basic I /O f a c i l i t i e s ∗ /

18

More about header files

•	 stdio.h – part of the C Standard Library
•	 other important header files: ctype.h, math.h,
stdlib.h, string.h, time.h

•	 For the ugly details: visit http:
//www.unix.org/single_unix_specification/
(registration required)

•	 Included files must be on include path
•	 -Idirectory with gcc: specify additional include

directories
•	 standard include directories assumed by default

•	 #include "stdio.h" – searches ./ for stdio.h first

19

http://www.unix.org/single_unix_specification/
http://www.unix.org/single_unix_specification/

Declaring variables

Must declare variables before use •

Variable declaration: •

int n;

float phi;

• int - integer data type
• float - floating-point data type
• Many other types (more next lecture. . .)

20

Initializing variables

•	 Uninitialized, variable assumes a default value
•	 Variables initialized via assignment operator:

n = 3;

Can also initialize at declaration:
•

float phi = 1.6180339887;

•	 Can declare/initialize multiple variables at once:
int a, b, c = 0, d = 4;

21

Arithmetic expressions

Suppose x and y are variables
•	 x+y, x-y, x*y, x/y, x%y: binary arithmetic
•	 A simple statement:

y = x+3∗x/(y−4);

•	 Numeric literals like 3 or 4 valid in expressions
•	 Semicolon ends statement (not newline)
•	 x += y, x -= y, x *= y, x /= y, x %= y: arithmetic

and assignment

22

Order of operations

• Order of operations:

Operator Evaluation direction
+,- (sign) right-to-left
*,/,% left-to-right
+,- left-to-right
=,+=,-=,*=,/=,%= right-to-left

• Use parentheses to override order of evaluation

23

2. Evaluate multiplies and divides, from left-to-right
float z = x+3∗x/2.0; → float z = x+6.0/2.0; → float z = x+3.0;

3. Evaluate addition
float z = x+3.0; → float z = 5.0;

4. Perform initialization with assignment
Now, z = 5.0.

How do I insert parentheses to get z = 4.0?
float z = (x+3∗x)/(y−4);

Order of operations

Assume x = 2.0 and y = 6.0. Evaluate the statement
float z = x+3∗x/(y−4);

1. Evaluate expression in parentheses

float z = x+3∗x/(y−4); float z = x+3∗x/2.0;
→

24

3. Evaluate addition
float z = x+3.0; → float z = 5.0;

4. Perform initialization with assignment
Now, z = 5.0.

How do I insert parentheses to get z = 4.0?
float z = (x+3∗x)/(y−4);

Order of operations

Assume x = 2.0 and y = 6.0. Evaluate the statement
float z = x+3∗x/(y−4);

1. Evaluate expression in parentheses

float z = x+3∗x/(y−4); float z = x+3∗x/2.0;
→

2. Evaluate multiplies and divides, from left-to-right
float z = x+3∗x/2.0; float z = x+6.0/2.0; float z = x+3.0; → →

24

4. Perform initialization with assignment
Now, z = 5.0.

How do I insert parentheses to get z = 4.0?
float z = (x+3∗x)/(y−4);

Order of operations

Assume x = 2.0 and y = 6.0. Evaluate the statement
float z = x+3∗x/(y−4);

1. Evaluate expression in parentheses

float z = x+3∗x/(y−4); float z = x+3∗x/2.0;
→

2. Evaluate multiplies and divides, from left-to-right
float z = x+3∗x/2.0; float z = x+6.0/2.0; float z = x+3.0; → →

3. Evaluate addition

float z = x+3.0; float z = 5.0;
→

24

How do I insert parentheses to get z = 4.0?
float z = (x+3∗x)/(y−4);

Order of operations

Assume x = 2.0 and y = 6.0. Evaluate the statement
float z = x+3∗x/(y−4);

1. Evaluate expression in parentheses

float z = x+3∗x/(y−4); float z = x+3∗x/2.0;
→

2. Evaluate multiplies and divides, from left-to-right
float z = x+3∗x/2.0; float z = x+6.0/2.0; float z = x+3.0; → →

3. Evaluate addition

float z = x+3.0; float z = 5.0;
→

4. Perform initialization with assignment

Now, z = 5.0.

24

float z = (x+3∗x)/(y−4);

Order of operations

Assume x = 2.0 and y = 6.0. Evaluate the statement
float z = x+3∗x/(y−4);

1. Evaluate expression in parentheses

float z = x+3∗x/(y−4); float z = x+3∗x/2.0;
→

2. Evaluate multiplies and divides, from left-to-right
float z = x+3∗x/2.0; float z = x+6.0/2.0; float z = x+3.0; → →

3. Evaluate addition

float z = x+3.0; float z = 5.0;
→

4. Perform initialization with assignment

Now, z = 5.0.

How do I insert parentheses to get z = 4.0?

24

Order of operations

Assume x = 2.0 and y = 6.0. Evaluate the statement
float z = x+3∗x/(y−4);

1. Evaluate expression in parentheses

float z = x+3∗x/(y−4); float z = x+3∗x/2.0;
→

2. Evaluate multiplies and divides, from left-to-right
float z = x+3∗x/2.0; float z = x+6.0/2.0; float z = x+3.0; → →

3. Evaluate addition

float z = x+3.0; float z = 5.0;
→

4. Perform initialization with assignment

Now, z = 5.0.

How do I insert parentheses to get z = 4.0?
float z = (x+3∗x)/(y−4);

24

Function prototypes

Functions also must be declared before use •

•	 Declaration called function prototype
•	 Function prototypes:

int factorial (int); or int factorial (int n);

•	 Prototypes for many common functions in header files for
C Standard Library

25

Function prototypes

General form: •

return_type function_name(arg1,arg2,...);

•	 Arguments: local variables, values passed from caller
•	 Return value: single value returned to caller when function

exits
•	 void – signifies no return value/arguments

int rand(void);

26

The main() function

•	 main(): entry point for C program
•	 Simplest version: no inputs, outputs 0 when successful,

and nonzero to signal some error
int main(void);

•	 Two-argument form of main(): access command-line
arguments
int main(int argc, char ∗∗argv);

•	 More on the char **argv notation later this week. . .

27

Function definitions

Function declaration
{
declare variables;
program statements;

}

•	 Must match prototype (if there is one)

variable names don’t have to match
•
no semicolon at end •

• Curly braces define a block – region of code
• Variables declared in a block exist only in that block

• Variable declarations before any other statements

28

Our main() function

/ ∗ The main () f u n c t i o n ∗ /
i n t main (void) / ∗ en t ry po i n t ∗ /
{

/ ∗ w r i t e message to console ∗ /
puts ("hello, 6.087 students") ;

return 0; / ∗ e x i t (0 => success) ∗ /
}

•	 puts(): output text to console window (stdout) and end
the line

•	 String literal: written surrounded by double quotes
•	 return 0;

exits the function, returning value 0 to caller

29

Alternative main() function

•	 Alternatively, store the string in a variable first:

i n t main (void) / ∗ en t ry po in t ∗ /

{

const char msg [] = "hello, 6.087 students" ;

/ ∗ w r i t e message to console ∗ /
puts (msg) ;

•	 const keyword: qualifies variable as constant
•	 char: data type representing a single character; written in

quotes: ’a’, ’3’, ’n’

•	 const char msg[]: a constant array of characters

30

More about strings

•	 Strings stored as character array
•	 Null-terminated (last character in array is ’\0’ null)

•	 Not written explicitly in string literals
•	 Special characters specified using \ (escape character):

•	 \\ – backslash, \’ – apostrophe, \” – quotation mark
•	 \b, \t, \r, \n – backspace, tab, carriage return, linefeed
•	 \ooo, \xhh – octal and hexadecimal ASCII character

codes, e.g. \x41 – ’A’, \060 – ’0’

31

Console I/O

•	 stdout, stdin: console output and input streams
•	 puts(string): print string to stdout
•	 putchar(char): print character to stdout
•	 char = getchar(): return character from stdin
•	 string = gets(string): read line from stdin into

string
•	 Many others - later this week

32

Preprocessor macros

•	 Preprocessor macros begin with # character
#include <stdio.h>

•	 #define msg "hello, 6.087 students"

defines msg as “hello, 6.087 students” throughout
source file

•	 many constants specified this way

33

Defining expression macros

•	 #define can take arguments and be treated like a function
#define add3(x,y,z) ((x)+(y)+(z))

•	 parentheses ensure order of operations
•	 compiler performs inline replacement; not suitable for

recursion

34

Conditional preprocessor macros

•	 #if, #ifdef, #ifndef, #else, #elif , #endif
conditional preprocessor macros, can control which lines
are compiled

•	 evaluated before code itself is compiled, so conditions must
be preprocessor defines or literals

•	 the gcc option -Dname=value sets a preprocessor define
that can be used

•	 Used in header files to ensure declarations happen only
once

35

Conditional preprocessor macros

•	 #pragma
preprocessor directive

•	 #error, #warning
trigger a custom compiler error/warning

•	 #undef msg
remove the definition of msg at compile time

36

Compiling our code

After we save our code, we run gcc:

athena% gcc -g -O0 -Wall hello.c -o
hello.o

Assuming that we have made no errors, our compiling is
complete.

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

37

1

1

Running our code

Or, in gdb,

athena% gdb hello.o

.
. .
Reading symbols from hello.o...done.
(gdb) run
Starting program: hello.o
hello, 6.087 students

Program exited normally.

(gdb) quit

athena%

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

38

1

1

Summary

Topics covered:
• How to edit, compile, and debug C programs
•	 C programming fundamentals:

comments
•
• preprocessor macros, including #include
• the main() function
• declaring and initializing variables, scope
• using puts() – calling a function and passing an argument
• returning from a function

39

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
IAP 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Introduction to C
	Writing C Programs
	Our First C Program

