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Review: Multithreaded programming


•	 Thread: abstraction of parallel processing with shared 
memory 

•	 Program organized to execute multiple threads in parallel 
•	 Threads spawned by main thread, communicate via 

shared resources and joining 
•	 pthread library implements multithreading 

i n t pthread_create ( p thread_t thread , const p t h r e a d _ a t t r _ t a t t r , ∗	 ∗•	
void ∗(∗ s t a r t _ r o u t i n e ) ( void ∗ ) , void ∗ arg ) ; 

•	 void pthread_exit(void ∗value_ptr); 

•	 int pthread_join(pthread_t thread, void ∗∗value_ptr); 

•	 pthread_t pthread_self(void); 
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Review: Resource sharing


Access to shared resources need to be controlled to • 

ensure deterministic operation 
•	 Synchronization objects: mutexes, semaphores, read/write 

locks, barriers 
•	 Mutex: simple single lock/unlock mechanism 

•	 int pthread_mutex_init(pthread_mutex_t ∗mutex, const pthread_mutexattr_t ∗ attr); 

•	 int pthread_mutex_destroy(pthread_mutex_t ∗mutex); 

•	 int pthread_mutex_lock(pthread_mutex_t ∗mutex); 

•	 int pthread_mutex_trylock(pthread_mutex_t ∗mutex); 

•	 int pthread_mutex_unlock(pthread_mutex_t ∗mutex); 
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Review: Condition variables


• Lock/unlock (with mutex) based on run-time condition 
variable

Allows thread to wait for condition to be true
• 

• Other thread signals waiting thread(s), unblocking them 
• int pthread_cond_init(pthread_cond_t ∗cond, const pthread_condattr_t ∗attr); 

• int pthread_cond_destroy(pthread_cond_t ∗cond); 

• int pthread_cond_wait(pthread_cond_t ∗cond, pthread_mutex_t ∗mutex); 

• int pthread_cond_broadcast(pthread_cond_t ∗cond); 

• int pthread_cond_signal(pthread_cond_t ∗cond); 
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Multithreaded programming


•	 OS implements scheduler – determines which threads 
execute when 

•	 Scheduling may execute threads in arbitrary order 
•	 Without proper synchronization, code can execute 

non-deterministically 
•	 Suppose we have two threads: 1 reads a variable, 2 

modifies that variable 
•	 Scheduler may execute 1, then 2, or 2 then 1 

Non-determinism creates a race condition – where the • 

behavior/result depends on the order of execution 
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Race conditions


•	 Race conditions occur when multiple threads share a 
variable, without proper synchronization 

•	 Synchronization uses special variables, like a mutex, to 
ensure order of execution is correct 

•	 Example: thread T1 needs to do something before thread 
T2 

•	 condition variable forces thread T2 to wait for thread T1 

•	 producer-consumer model program 
•	 Example: two threads both need to access a variable and 

modify it based on its value

surround access and modification with a mutex
• 

•	 mutex groups operations together to make them atomic – 
treated as one unit 
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Race conditions in assembly


Consider the following program race.c: 
unsigned i n t cnt = 0 ; 

void ∗count ( void ∗arg ) { /∗ thread body ∗ / 
i n t i ; 
for ( i = 0 ; i < 100000000; i ++) 

cn t ++; 
return NULL ; 

} 

i n t main ( void ) { 
p thread_t t i d s [ 4 ] ; 
i n t i ; 
for ( i = 0 ; i < 4 ; i ++) 

p thread_create (& t i d s [ i ] , NULL, count , NULL ) ;

for ( i = 0 ; i < 4 ; i ++)


p th read _ jo in ( t i d s [ i ] , NULL ) ;

p r i n t f ( " cn t=%u \ n " , cn t ) ;

return 0;


} 

What is the value of cnt? 

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective. 
Prentice Hall, 2003.] © Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. 

For more information, see http://ocw.mit.edu/fairuse. 
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Race conditions in assembly


Ideally, should increment cnt 4 × 100000000 times, so 
cnt = 400000000. However, running our code gives: 

athena% ./race.o 
cnt=137131900 
athena% ./race.o 
cnt=163688698 
athena% ./race.o 
cnt=163409296 
athena% ./race.o 
cnt=170865738 
athena% ./race.o 
cnt=169695163 

So, what happened? 
Athena is MIT's UNIX-based computing environment. OCW does not provide access to it. 
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Race conditions in assembly


•	 C not designed for multithreading 
•	 No notion of atomic operations in C 
•	 Increment cnt++; maps to three assembly operations: 

1. load cnt into a register 
2. increment value in register 
3.	 save new register value as new cnt 

•	 So what happens if thread interrupted in the middle? 
Race condition! • 
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Race conditions in assembly


Let’s fix our code: 
pthread_mutex_t mutex ; 
unsigned i n t cnt = 0 ; 

void ∗count ( void ∗arg ) { /∗ thread body ∗ / 
i n t i ; 
for ( i = 0 ; i < 100000000; i ++) { 

pthread_mutex_lock (&mutex ) ;

cn t ++;

pthread_mutex_unlock (&mutex ) ;


} 
return NULL ; 

} 

i n t main ( void ) { 
p thread_t t i d s [ 4 ] ; 
i n t i ; 
p th read_mutex_ in i t (&mutex , NULL ) ; 
for ( i = 0 ; i < 4 ; i ++) 

p thread_create (& t i d s [ i ] , NULL, count , NULL ) ; 
for ( i = 0 ; i < 4 ; i ++) 

p th read _ jo in ( t i d s [ i ] , NULL ) ;

pthread_mutex_destroy (&mutex ) ;

p r i n t f ( " cn t=%u \ n " , cn t ) ;

return 0;


} 
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Race conditions


•	 Note that new code functions correctly, but is much slower 
•	 C statements not atomic – threads may be interrupted at 

assembly level, in the middle of a C statement 
•	 Atomic operations like mutex locking must be specified as 

atomic using special assembly instructions 
•	 Ensure that all statements accessing/modifying shared 

variables are synchronized 
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Semaphores


•	 Semaphore – special nonnegative integer variable s, 
initially 1, which implements two atomic operations: 

•	 P(s) – wait until s > 0, decrement s and return 
•	 V(s) – increment s by 1, unblocking a waiting thread 

•	 Mutex – locking calls P(s) and unlocking calls V(s) 

•	 Implemented in <semaphore.h>, part of library rt, not 
pthread 
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Using semaphores


•	 Initialize semaphore to value: 
int sem_init(sem_t ∗sem, int pshared, unsigned int value); 

•	 Destroy semaphore: 
int sem_destroy(sem_t ∗sem); 

•	 Wait to lock, blocking: 
int sem_wait(sem_t ∗sem); 

•	 Try to lock, returning immediately (0 if now locked, −1 
otherwise): 
int sem_trywait(sem_t ∗sem); 

•	 Increment semaphore, unblocking a waiting thread: 
int sem_post(sem_t ∗sem); 
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Producer and consumer revisited


•	 Use a semaphore to track available slots in shared buffer 
•	 Use a semaphore to track items in shared buffer 
•	 Use a semaphore/mutex to make buffer operations 

synchronous 
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Producer and consumer revisited

#include < s t d i o . h> for ( i = 0 ; i < ITEMS ; i ++) {

#include <pthread . h> sem_wait (& i tems ) ;

#include <semaphore . h> sem_wait (&mutex ) ;


p r i n t f ( " consumed(%l d ):%d \ n " , 
sem_t mutex , s l o t s , i tems ; p th read_se l f ( ) , i +1 ) ; 

sem_post (&mutex ) ; 
#define SLOTS 2 sem_post (& s l o t s ) ; 
#define ITEMS 10 } 

return NULL; 
void∗ produce ( void∗ arg ) } 
{ 

i n t i ; i n t main ( )

for ( i = 0 ; i < ITEMS ; i ++) {

{ p thread_t tcons , t p ro ;


sem_wait (& s l o t s ) ;

sem_wait (&mutex ) ; sem_in i t (&mutex , 0 , 1 ) ;

p r i n t f ( " produced(% l d ):%d \ n " , sem_in i t (& s lo t s , 0 , SLOTS ) ;


p th read_se l f ( ) , i +1 ) ; sem_in i t (& items , 0 , 0 ) ; 
sem_post (&mutex ) ; 
sem_post (& i tems ) ; p thread_create (& tcons ,NULL, consume ,NULL ) ; 

} p thread_create (& tpro ,NULL, produce ,NULL ) ; 
return NULL; p th read_ jo in ( tcons ,NULL ) ; 

} p th read_ jo in ( tpro ,NULL ) ; 

void∗ consume ( void∗ arg ) sem_destroy (&mutex ) ; 
{ sem_destroy (& s l o t s ) ; 

i n t i ; sem_destroy (& i tems ) ; 
return 0; 

} 

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective. 
Prentice Hall, 2003.] © Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. 

For more information, see http://ocw.mit.edu/fairuse. 14
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Other challenges


•	 Synchronization objects help solve race conditions 
•	 Improper use can cause other problems 

Some common issues: • 

•	 thread safety and reentrant functions

deadlock
• 
starvation • 
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Thread safety


•	 Function is thread safe if it always behaves correctly when 
called from multiple concurrent threads 

•	 Unsafe functions fal in several categories: 
•	 accesses/modifies unsynchronized shared variables 
•	 functions that maintain state using static variables – like 
rand(), strtok() 

•	 functions that return pointers to static memory – like 
gethostbyname() 

•	 functions that call unsafe functions may be unsafe 
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Reentrant functions


•	 Reentrant function – does not reference any shared data 
when used by multiple threads 

•	 All reentrant functions are thread-safe (are all thread-safe 
functions reentrant?) 

•	 Reentrant versions of many unsafe C standard library 
functions exist: 

Unsafe function 
rand()

strtok()

asctime()

ctime()

gethostbyaddr()

gethostbyname()

inet_ntoa()

localtime()


Reentrant version

rand_r() 
strtok_r() 
asctime_r() 
ctime_r() 
gethostbyaddr_r() 
gethostbyname_r() 
(none) 
localtime_r() 
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Thread safety


To make your code thread-safe: 
• Use synchronization objects around shared variables 

Use reentrant functions • 

•	 Use synchronization around functions returning pointers to 
shared memory (lock-and-copy): 

1. lock mutex for function 
2. call unsafe function 
3. dynamically allocate memory for result; (deep) copy result 

into new memory 
4. unlock mutex 
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Deadlock


•	 Deadlock – happens when every thread is waiting on 
another thread to unblock 

•	 Usually caused by improper ordering of synchronization 
objects 

•	 Tricky bug to locate and reproduce, since 
schedule-dependent 

•	 Can visualize using a progress graph – traces progress of 
threads in terms of synchronization objects 
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Deadlock


20 

Figure removed due to copyright restrictions. Please see
http://csapp.cs.cmu.edu/public/1e/public/figures.html,
Figure 13.39, Progress graph for a program that can deadlock.

http://csapp.cs.cmu.edu/public/1e/public/figures.html


Deadlock


•	 Defeating deadlock extremely difficult in general 
•	 When using only mutexes, can use the “mutex lock


ordering rule” to avoid deadlock scenarios:

A program is deadlock-free if, for each pair of mutexes (s, t) 
in the program, each thread that uses both s and t 
simultaneously locks them in the same order. 

[Bryant and O’Halloran. Computer Systems: A Programmer’s Perspective 

Prentice Hall, 2003.] 
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Starvation and priority inversion


Starvation similar to deadlock • 

•	 Scheduler never allocates resources (e.g. CPU time) for a 
thread to complete its task 

•	 Happens during priority inversion 
•	 example: highest priority thread T1 waiting for low priority 

thread T2 to finish using a resource, while thread T3, which 
has higher priority than T2, is allowed to run indefinitely 

•	 thread T1 is considered to be in starvation 
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Sockets


Socket – abstraction to enable communication across a • 

network in a manner similar to file I/O 
•	 Uses header <sys/socket.h> (extension of C standard 

library) 
•	 Network I/O, due to latency, usually implemented 

asynchronously, using multithreading 
•	 Sockets use client/server model of establishing 

connections 
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Creating a socket


•	 Create a socket, getting the file descriptor for that socket: 
int socket(int domain, int type, int protocol ); 

•	 domain – use constant AF_INET, so we’re using the 
internet; might also use AF_INET6 for IPv6 addresses 

•	 type – use constant SOCK_STREAM for connection-based 
protocols like TCP/IP; use SOCK_DGRAM for connectionless 
datagram protocols like UDP (we’ll concentrate on the 
former) 

•	 protocol – specify 0 to use default protocol for the socket 
type (e.g. TCP) 

•	 returns nonnegative integer for file descriptor, or −1 if 
couldn’t create socket 

•	 Don’t forget to close the file descriptor when you’re done! 
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Connecting to a server


•	 Using created socket, we connect to server using: 
int connect(int fd , struct sockaddr ∗addr, int addr_len); 

•	 fd – the socket’s file descriptor 
•	 addr – the address and port of the server to connect to; for 

internet addresses, cast data of type struct 
sockaddr_in, which has the following members: 

•	 sin_family – address family; always AF_INET 
•	 sin_port – port in network byte order (use htons() to 

convert to network byte order) 
•	 sin_addr.s_addr – IP address in network byte order (use 
htonl() to convert to network byte order) 

•	 addr_len – size of sockaddr_in structure

returns 0 if successful
• 
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Associate server socket with a port


•	 Using created socket, we bind to the port using: 
int bind(int fd , struct sockaddr ∗addr, int addr_len); 

•	 fd, addr, addr_len – same as for connect() 
note that address should be IP address of desired interface • 
(e.g. eth0) on local machine 

•	 ensure that port for server is not taken (or you may get 
“address already in use” errors) 

•	 return 0 if socket successfully bound to port 
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Listening for clients


•	 Using the bound socket, start listening: 
int listen ( int fd , int backlog); 

•	 fd – bound socket file descriptor 
•	 backlog – length of queue for pending TCP/IP 

connections; normally set to a large number, like 1024 
returns 0 if successful • 
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Accepting a client’s connection


•	 Wait for a client’s connection request (may already be 
queued): 
int accept(int fd , struct sockaddr ∗addr, int ∗addr_len); 

•	 fd – socket’s file descriptor 
•	 addr – pointer to structure to be filled with client address 

info (can be NULL) 
•	 addr_len – pointer to int that specifies length of structure 

pointed to by addr; on output, specifies the length of the 
stored address (stored address may be truncated if bigger 
than supplied structure) 

•	 returns (nonnegative) file descriptor for connected client 
socket if successful 
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Reading and writing with sockets


•	 Send data using the following functions: 
int write ( int fd , const void ∗buf, size_t len ); 

int send(int fd , const void ∗buf, size_t len, int flags ); 

•	 Receive data using the following functions: 
int read(int fd , void ∗buf, size_t len ); 

int recv(int fd , void ∗buf, size_t len, int flags ); 

•	 fd – socket’s file descriptor

buf – buffer of data to read or write
• 

•	 len – length of buffer in bytes 
•	 flags – special flags; we’ll just use 0 
•	 all these return the number of bytes read/written (if 

successful) 
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Asynchronous I/O


•	 Up to now, all I/O has been synchronous – functions do not 
return until operation has been performed 

•	 Multithreading allows us to read/write a file or socket 
without blocking our main program code (just put I/O 
functions in a separate thread) 

•	 Multiplexed I/O – use select() or poll() with multiple 
file descriptors 

30 



I/O multiplexing with select()


•	 To check if multiple files/sockets have data to 
read/write/etc: (include <sys/select.h>) 
int select( int nfds, fd_set ∗readfds, fd_set ∗writefds, fd_set ∗errorfds, struct timeval ∗timeout); 

•	 nfds – specifies the total range of file descriptors to be 
tested (0 up to nfds−1) 

•	 readfds, writefds, errorfds – if not NULL, pointer to 
set of file descriptors to be tested for being ready to read, 
write, or having an error; on output, set will contain a list of 
only those file descriptors that are ready 

•	 timeout – if no file descriptors are ready immediately, 
maximum time to wait for a file descriptor to be ready 

•	 returns the total number of set file descriptor bits in all the 
sets 

•	 Note that select() is a blocking function 
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I/O multiplexing with select()


•	 fd_set – a mask for file descriptors; bits are set (“1”) if in 
the set, or unset (“0”) otherwise 

•	 Use the following functions to set up the structure: 
•	 FD_ZERO(&fdset) – initialize the set to have bits unset for all file 

descriptors 
•	 FD_SET(fd, &fdset) – set the bit for file descriptor fd in the set 
•	 FD_CLR(fd, &fdset) – clear the bit for file descriptor fd in the set 
•	 FD_ISSET(fd, &fdset) – returns nonzero if bit for file descriptor fd is 

set in the set 
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I/O multiplexing using poll()


•	 Similar to select(), but specifies file descriptors 
differently: (include <poll.h>) 
int poll (struct pollfd fds [], nfds_t nfds, int timeout); 

•	 fds – an array of pollfd structures, whose members fd, 
events, and revents, are the file descriptor, events to 
check (OR-ed combination of flags like POLLIN, POLLOUT, 
POLLERR, POLLHUP), and result of polling with that file 
descriptor for those events, respectively 

•	 nfds – number of structures in the array 
•	 timeout – number of milliseconds to wait; use 0 to return 

immediately, or −1 to block indefinitely 
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Summary


•	 Multithreaded programming 
race conditions • 

•	 semaphores 
•	 thread safety 

deadlock and starvation • 

•	 Sockets, asynchronous I/O 
•	 client/server socket functions 
•	 select() and poll() 
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