
1 6.090, IAP 2005—Lecture 8


Department of Electrical Engineering and Computer Science 
6.090—Building Programming Experience 

IAP 2005 

Lecture 8 

Tags 

; professor abstraction 
(define (makeprofessor name salary) 

(list name salary)) 

(define (professorname prof) 
(first prof)) 

(define (professorsalary prof) 
(second prof)) 

; graduate student abstraction 
(define (makegradstudent name salary) 

(list name salary)) 

(define (gradstudentname grad) 
(first grad)) 

(define (gradstudentsalary grad) 
(second grad)) 

Given a list that contains both professors and graduate students, compute the total cost of their 
salaries. 

(define (totalcost peoplelist) 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



2 6.090, IAP 2005—Lecture 8 

Association Lists 

Scheme 

1. assoc  (assoc key alist)  returns association containing matching key or #f. 

2. delassoc  (delassoc key alist)  returns a new alist with association with matching key 
removed. 

Problems 

1. Evaluate the following expressions, first guessing then checking with Scheme. 

(define alst (list (list 1 2) (list 3 4) (list 5 6)))


(assoc 4 alst)


(assoc 3 alst)


(assoc 5 (cons (list 5 12) alst))


(delassoc 5 alst)


(define alst2 (list (list "foo" 17) (list "bar" 42) (list "baz" 54)))


(assoc "foo" alst2)


(delassoc "bar" alst2)


(assoc "yummy" alst2)


(assoc "yummy" alst)


2. Rewrite lookup from homework 7 using assoc. 

(define (lookup word thesaurus) 



3 6.090, IAP 2005—Lecture 8 

Trees 

(define (makenode val left right) 
(list "node" val left right)) 

(define (node? x) 
(and (pair? x) (string=? (car x) "node"))) 

(define (nodeval node) 
(second node)) 

(define (nodeleft node) 
(third node)) 

(define (noderight node) 
(fourth node)) 

(define (leaf? x) 
(not (node? x))) 

1. Write treecontains?, which returns true if the tree contains the value as a leaf. 

(define (treecontains? tree val) 

2. Write sumtree, which returns the sum of the leaves of the tree. 

(define (sumtree tree) 

(define (insertlist elem lst) 
(if (null? lst)


(list elem)

(if (< elem (car lst))


(cons elem lst)

(cons (car lst) (insertlist elem (cdr lst))))))


(define (avg v1 v2) 
(/ (+ v1 v2) 2)) 



4 6.090, IAP 2005—Lecture 8 

3. Complete inserttree, which returns a new tree with the value added to the correct place 
in the tree. 

(define (inserttree elem tree)

(if (leaf? tree)


(if (= elem tree)

INSERT1

(if (< elem tree)


INSERT2

INSERT3))


(if (< elem (nodeval tree))

(makenode	 (nodeval tree)


INSERT4

(noderight tree))


(makenode	 (nodeval tree)

(nodeleft tree)

INSERT5))))




5 6.090, IAP 2005—Lecture 8 

Animal Guessing Game 

Download lec8.scm from the website. 

1. Write the animal abstraction 

2. Write the askaboutanimal procedure, which should take an animal as input and ask the 
player if that is their animal 

(askaboutanimal (makeanimal "elephant")) 

Is it a elephant (y or n)? ; (’n’ key was struck)

;Value: #f


3. Look at the playgame procedure. This procedure uses a guesser procedure combined with 
some knowledge of animals in order to guess the player’s animal. Let’s start off by using a 
list of animals as the knowledge. Implement listguesser, which takes in a list of animals 
and asks the player about them until it guesses the animal or runs out of knowledge. If it 
succeeds, use printmsg to print out a victory message. If it runs out of knowledge without 
guessing the animal, print out "I give up.". 

4. Look more closely at the playgame procedure. It uses the return value of the guesser as 
the new knowledge to use when playing the next game. Thus, we want to have the guesser 
return the knowledge. The reason playgame does this is it allows the guesser to ask a couple 
more questions when it fails to extend its knowledge to cover the situation where it lost: 

(playgame newlistguesser samplelist) 

Is it a elephant (y or n)? n 

Is it a hummingbird (y or n)? n

I give up.


What was your animal

(Please enter a string (surrounded by "s) and use Cx, Ce to submit it)

"thesaurus"


play again (y or n)? y


Is it a elephant (y or n)? n


Is it a hummingbird (y or n)? n


Is it a thesaurus (y or n)? y

Yay!


play again (y or n)? n 
;Value: (("animal" "elephant") ("animal" "hummingbird") ("animal" "thesaurus")) 



6 6.090, IAP 2005—Lecture 8 

Write a newlistguesser procedure which returns a new improve knowledge list each time 
it runs. 

5. Most games of guess an animal are not played by repeated asking the player about every 
animal you know. By asking other yesno questions, the scope of possible animals can be 
narrowed to a small range. The sounds like a job for trees! 

Implement the question abstraction: a question is a node in our knowledge tree. 

6. Implement the askquestion procedure which asks the player the question. 

7. The leaves of the tree are animals. Implement treeguesser that takes in a tree as its 
knowledge and searchs the tree, asking questions to decide whether the left or right branch 
is the correct one. 

(playgame newtreeguesser sampletree) 

does it fly (y or n)? n 

Is it a elephant (y or n)? y

Yay!


play again (y or n)? y 

does it fly (y or n)? y 

Is it a hummingbird (y or n)? y

Yay!


play again (y or n)? n 
;Value: ("question" "does it fly" ("animal" "hummingbird") ("animal" "elephant")) 

8. Once again, we should write our guesser such that it improves its knowledge each time. The 
improvetree procedure has been given to you. Write newtreeguesser. 


