Stepper Motors

- DC motors with permanent motors and multiple coils around the body.
- Coils are turned on and off in sequence to cause the motor to turn.
- Because the coils are turned on and off they are easy to control with microcomputer and digital circuits. At any given time, the position of the shaft is known.
- Holding torque requires power.

Servos

- Servos are motors with electronic circuitry that controls the angular position of the shaft based on a control signal. If the angle is incorrect the motor is turned on until the correct position is reach.
- Angular position controlled by a $0-2.0 \mathrm{~ms}$ pulse width.

Schematic Drawing Convention

Lab Exercise - Review Ramp Generator

RAMP Generator Output

DA Summary

- Output from digital to analog conversion are discrete levels.
- More bits means better resolution.
- An example of DA conversion
- Current audio CD's have 16 bit resolution or 65,536 possible output levels
- New DVD audio samples at 192 khz with 24 bit resolution or $2^{24}=16,777,216$

Analog to Digital Conversion (ADC)

- Successive approximate conversion steps
- Scale the input to 0-3 volts (example)
- Sample and hold the input
- Internally generate and star case ramp and compare
- Flash Compare
- Compare voltage to one of 2^{n} possible voltage levels. 8 bit ADC would have 255 comparators.
- Note that by definition, ADC have quantizing errors (number of bits resolution)

Successive Approximation AD

Serial conversion takes a time equal to $N\left(t_{D / A}+t_{\text {comp }}\right)$

Binary Adder - $\mathrm{m}^{\text {th }}$ bit

$\mathbf{C}_{\text {in }}$	\mathbf{A}	\mathbf{B}	Sum	$\mathbf{C}_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum =
$\mathrm{C}_{\text {out }}=$

Switch Bounce

- All mechanical switches have "switch bounce"

Debounce Circuit

Requires SPDT switch

\mathbf{T}	Qbar	\mathbf{Q}
0	0	1
0	1	1
1	0	1
1	1	0

T	0		
B	1		
Q			
Qbar			

Lab 5

- Design, build and keep the electronics for a digital lock.
- Unlock key based on sequence of 0, 1 .

Digital Lock

Pushbutton Clocking

Digital Lock

Design guidelines

- Apply power and ground to each chip
- Add 10 uf or greater to power bus
- Select and wire up desired code
- For control inputs on all IC's or inputs that matter, tie to a " 1 " or a " 0 ". Floating inputs are in an indeterminate state.

Construction Techniques

- Consider placement of IC's
- Wire up power and ground to all IC's
- Use all four power rails
- Build and debug in stages
- Debounce circuits
- Composite clock
- Shift registers
- Neat wiring helps!

Enhancements

- Increase lock code to 8 bits
- Add power up reset

Lab 5

- Use last three aisle on the left at the end of the 6.111 lab
- Pick up IC's and tools from LA's.
- You may keep the completed circuit you build (pushbuttons, IC's, everything!)
- Return tools.

Odds and Ends

- FPGA: Field Programmable Gate Array
- Use high level hardware description language (HDL) to describe behavior
- Can be re-programmed thousands of times.
- very inexpensive kits
- free software tools on web
- Please complete your evaluation of this course

