
Jan. 25, 2010 Homework 1 6.094: Introduction to Matlab

Homework 1

This homework is designed to teach you to think in terms of matrices and vectors because this is how

Matlab organizes data. You will find that complicated operations can often be done with one or two

lines of code if you use appropriate functions and have the data stored in an appropriate structure. The

other purpose of this homework is to make you comfortable with using help to learn about new

functions. The names of the functions you’ll need to look up are provided in bold where needed.

Homework must be submitted on the stellar website before the start of the next class.

What to turn in: Copy the text from your scripts and paste it into a document. If a question asks you to

plot or display something to the screen, also include the plot and screen output your code generates.

Submit either a *.doc or *.pdf file.

For problems 1-7, write a script called shortProblems.m and put all the commands in it. Separate

and label different problems using comments.

1. Scalar variables. Make the following variables

a. a = 10

b. b = 2.5 ×10 23

c. c = 2 + 3i , where i is the imaginary number

d. d = e j 2π /3
, where j is the imaginary number and e is Euler’s number (use exp, pi)

2. Vector variables. Make the following variables

a. aVec = [3.14 15 9 26]
2.71

b. bVec =
8

 28

182

c. cVec = [5 4.8 ⋯ −4.8 −5] (all the numbers from 5 to -5 in increments of -0.2)

d. dVec = 10 0 10 0.01
⋯ 10 0.99 10 1

 (logarithmically spaced numbers between 1

and 10, use logspace, make sure you get the length right!)

e. eVec = Hello (eVec is a string, which is a vector of characters)

3. Matrix variables. Make the following variables

2 ⋯ 2

a. aMat = ⋮ ⋱ ⋮ a 9x9 matrix full of 2’s (use ones or zeros)

2 ⋯ 2

1

Jan. 25, 2010	 Homework 1 6.094: Introduction to Matlab

1 0 ⋯ 0
	
0	 ⋱ 0 ⋱

b.	 bMat = ⋮ 0 5 0 ⋮ a 9x9 matrix of all zeros, but with the values
	
	 ⋱ 0 ⋱ 0
	 0 ⋯ 0 1

[1 2 3 4 5 4 3 2 1] on the main diagonal (use zeros, diag).

 1 11 ⋯ 91

 2 12 ⋱ 92 c.	 cMat = a 10x10 matrix where the vector 1:100 runs down the
 ⋮ ⋮ ⋱ ⋮
	
10 20 ⋯ 100

columns (use reshape).

NaN NaN NaN NaN

d.	 dMat = NaN NaN NaN NaN a 3x4 NaN matrix (use nan)

NaN NaN NaN NaN
	

 13 −1 5
e.	 eMat =

−22 10	 −87
f.	 Make fMat be a 5x3 matrix of random integers with values on the range -3 to 3 (use

rand and floor or ceil)

4.	 Scalar equations. Using the variables created in 1, calculate x , y , and z .

1
a.	 x =

1+ e(−(a−15 /6))

21	 g 1/ g
b.	 y = (a + b)π

, recall that h = h , and use sqrt

log (ℜ (c + d) (c − d) sin (aπ / 3))
c. z =	 where ℜ indicates the real part of the

cc
complex number in brackets, c is the complex conjugate of c , and log is the natural

log (use real, conj, log).

5. Vector equations. Using the variables created in 2, solve the equations below, elementwise. For

example, in part a, the first element of xVec should just be the function evaluated at the value

1 −cVec 2 2 2.5 2i
of the first element of cVec : xVec 1 = e 1 ()

, and similarly for all the other
2π 2.5 2

elements so that xVec and cVec have the same size. Use the elementwise operators .*, ./, .^.

2

Jan. 25, 2010	 Homework 1 6.094: Introduction to Matlab

21 −cVec (2 2.5i 2)
a.	 xVec = e

2π 2.5 2

T 2
b. yVec =	 (aVec)2

+ bVec , aVecT
indicates the transpose of aVec

c.	 zVec = log (1/ dVec) , remember that log is the log base 10, so use log10 10	 10

6.	 Matrix equations. Using the variables created in 2 and 3, solve the equations below. Use matrix

operators.

2
a.	 xMat = (i iaMat aVec bVec)
b.	 yMat i i= bVec aVec , note that this is not the same as aVec bVec

c.	 zMat = cMat (i)T
, where aMat bMat cMat is the determinant of cMat , and T

again indicates the transpose (use det).

7.	 Common functions and indexing.

a.	 Make cSum the column-wise sum of cMat . The answer should be a row vector (use

sum).

b.	 Make eMean the mean across the rows of eMat . The answer should be a column (use

mean).

c.	 Replace the top row of eMat with [1 1 1] .
d.	 Make cSub the submatrix of cMat that only contains rows 2 through 9 and columns 2

through 9.

e.	 Make the vector lin = [1 2 ⋯ 20] (the integers from 1 to 20), and then make

every other value in it negative to get lin = [1 −2 3 −4 ⋯ −20] .
f.	 Make r a 1x5 vector using rand. Find the elements that have values <0.5 and set those

values to 0 (use find).

3

Jan. 25, 2010	 Homework 1 6.094: Introduction to Matlab

8.	 Plotting multiple lines and colors. In class we covered how to plot a single line in the default

blue color on a plot. You may have noticed that subsequent plot commands simply replace the

existing line. Here, we’ll write a script to plot two lines on the same axes.

a. Open a script and name it twoLinePlot.m. Write the following commands in this

script.

b. Make a new figure using figure

c. We’ll plot a sine wave and a cosine wave over one period

i. Make a time vector t from 0 to 2π with enough samples to get smooth lines

ii. Plot ()sin t

iii. Type hold on to turn on the ‘hold’ property of the figure. This tells the figure not

to discard lines that are already plotted when plotting new ones. Similarly, you

can use hold off to turn off the hold property.

iv. Plot ()cos t using a red dashed line. To specify line color and style, simply add a

third argument to your plot command (see the third paragraph of the plot help).

This argument is a string specifying the line properties as described in the help

file. For example, the string ‘k:’ specifies a black dotted line.

d. Now, we’ll add labels to the plot

i. Label the x axis using xlabel

ii. Label the y axis using ylabel

iii. Give the figure a title using title

iv. Create a legend to describe the two lines you have plotted by using legend and

passing to it the two strings ‘Sin’ and ‘Cos’.

e. If you run the script now, you’ll see that the x axis goes from 0 to 7 and y goes from -1 to

1. To make this look nicer, we’ll manually specify the x and y limits. Use xlim to set the x

axis to be from 0 to 2π and use ylim to set the y axis to be from -1.4 to 1.4.

f. Run the script to verify that everything runs right. You should see something like this:

Sin and Cos functions

-1

-0.5

0

0.5

1

F
un

ct
io

n
va

lu
e

Sin

Cos

0 1 2 3 4 5 6
Time (s)

4

Jan. 25, 2010	 Homework 1 6.094: Introduction to Matlab

Optional Problems

9.	 Optional: Manipulating variables. Write a script to read in some grades, curve them, and

display the overall grade. To do this, you’ll need to download the file classGrades.mat off

the class website and put it in the same folder as your script.

a.	 Open a script and name it calculateGrades.m. Write all the following commands

in this script.

b.	 Load the classGrades file using load. This file contains a single variable called

namesAndGrades
c.	 To see how namesAndGrades is structured, display the first 5 rows on your screen.

The first column contains the students ‘names’, they’re just the integers from 1 to 15.

The remaining 7 columns contain each student’s score (on a scale from 0 to 5) on each

of 7 assignments. There are also some NaNs which indicate that a particular student was

absent on that day and didn’t do the assignment.

d.	 We only care about the grades, so extract the submatrix containing all the rows but only

columns 2 through 8 and name this matrix grades (to make this work on any size

matrix, don’t hard-code the 8, but rather use end or size(namesAndGrades,2)).

e.	 Calculate the mean score on each assignment. The result should be a 1x7 vector

containing the mean grade on each assignment.

i.	 First, do this using mean. Display the mean grades calculated this way. Notice

that the NaNs that were in the grades matrix cause some of the mean grades to

be NaN as well.

ii.	 To fix this problem, do this again using nanmean. This function does exactly

what you want it to do, it computes the mean using only the numbers that are

not NaN. This means that the absent students are not considered in the

calculation, which is what we want. Name this mean vector meanGrades and

display it on the screen to verify that it has no NaNs

f.	 Normalize each assignment so that the mean grade is 3.5 (this is a B- on our 5 point

scale). You’ll want to divide each column of grades by the correct element of

meanGrades .
i.	 Make a matrix called meanMatrix such that it is the same size as grades , and

each row has the values meanGrades . Do this by taking the outer product of a

15x1 vector of ones and the vector meanGrades , which is a row (use ones, *).

Display meanMatrix to verify that it looks the way you want.

ii.	 To calculate the curved grades, do the following:

curvedGrades = 3.5(grades / meanMatrix) . Keep in mind that you want to

do the division elementwise.

iii.	 Compute and display the mean of curvedGrades to verify that they’re all 3.5

(nanmean).

5

Jan. 25, 2010 Homework 1 6.094: Introduction to Matlab

iv. Because we divided by the mean and multiplied by 3.5, it’s possible that some

grades that were initially close to 5 are now larger than 5. To fix this, find all the

elements in curvedGrades that are greater than 5 and set them to 5. Use find

g. Calculate the total grade for each student and assign letter grades

i. To calculate the totalGrade vector, which will contain the numerical grade for

each student, you want to take the mean of curvedGrades across the columns

(use nanmean, see help for how to specify the dimension). Also, we only want

to end up with numbers from 1 to 5, so calculate the ceiling of the totalGrade
vector (use ceil).

ii. Make a string called letters that contains the letter grades in increasing order:

FDCBA

iii. Make the final letter grades vector letterGrades by using totalGrade (which

after the ceil operation should only contain values between 1 and 5) to index

into letters .
iv. Finally, display the following using disp: Grades: letterGrades

h. Run the script to verify that it works. You should get an output like this

6

Jan. 25, 2010	 Homework 1 6.094: Introduction to Matlab

10. Optional: Convergence of infinite series. We’ll look at two series that converge to a finite value

when they are summed.

a.	 Open a new script in the Matlab Editor and save it as seriesConvergence.m
∞

b.	 First, we’ll deal with a geometric series G = ∑ pk
. We need to define the value of p

k =0

and the values of k
i.	 p =0.99.

ii.	 k is a vector containing the integers from 0 to 1000, inclusive.

c.	 Calculate each term in the series (before summation)

i. geomSeries = pk	
(this should be done elementwise)

d.	 Calculate the value of the infinite series

∞

i.	 We know that G = ∑ pk = 1

k =0 1− p

e.	 Plot the value of the infinite series

i.	 Plot a horizontal red line that has x values 0 and the maximum value in k (use

max), and the y value is constant at G .
f.	 On the same plot, plot the value of the finite series for all values of k

i.	 Plot the cumulative sum of geomSeries versus k . The cumulative sum of a

vector is a vector of the same size, where the value of each element is equal to

the sum of all the elements to the left of it in the original vector. (use cumsum,

and try cumsum([1 1 1 1 1]) to understand what it’s doing.) Use a blue line when

plotting.

g.	 Label the x and y axes, and give the figure a title (xlabel, ylabel, title). Also create a

legend and label the first line ‘Infinite sum’, and the second line ‘Finite Sum’ (legend).

h.	 Run the script and note that the finite sum of 1000 elements comes very close to the

value of the infinite sum.

∞

i.	 Next, we will do a similar thing for another series, the p-series: P = ∑
1

n=1 n
p

j.	 At the bottom of the same script, initialize new variables

i.	 p = 2

ii.	 n is a vector containing all the integers from 1 to 500, inclusive.

k.	 Calculate the value of each term in the series

1
i.	 pSeries =

n p

l.	 Calculate the value of the infinite p-series. The infinite p-series with p = 2 has been

∞ 21 π
proven to converge to	 P = = .∑

1 n
p 6n=

7

Jan. 25, 2010	 Homework 1 6.094: Introduction to Matlab

m.	 Make a new figure and plot the infinite sum as well as the finite sum, as we did for the

geometric series

i.	 Make a new figure

ii.	 Plot the infinite series value as a horizontal red line with x values 0 and the

maximum value in n , and the y value is constant at P .
iii.	 Hold on to the figure, and plot the cumulative sum of pSeries versus n (use

hold on, cumsum).

iv.	 Label the x and y axes, give the figure a title, and make a legend to label the

lines as ‘Infinite sum’, and ‘Finite sum’ (use xlabel, ylabel, title, legend)

n.	 Run the script to verify that it produces the expected output. It should look something

like this:

Convergence of geometric series with p=0.99

Index

Convergence of p-series with p=2
1.8

1.7

0 50 100 150 200 250 300 350 400 450 500

Infinite sum

Finite sum

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

S
um

Infinite sum

Finite sum

S
um

1.6

1.5

1.4

1.3

1.2

1.1

1

Index

8

Jan. 25, 2010	 Homework 1 6.094: Introduction to Matlab

11. Optional: Throwing a ball. Below are all the steps you need to follow, but you should also add

your own meaningful comments to the code as you write it.

a.	 Start a new file in the Matlab Editor and save it as throwBall.m

b.	 At the top of the file, define some constants (you can pick your own variable names)

i.	 Initial height of ball at release = 1.5 m

ii.	 Gravitational acceleration = 9.8 m/s
2

iii.	 Velocity of ball at release = 4 m/s

iv.	 Angle of the velocity vector at time of release = 45 degrees

c.	 Next, make a time vector that has 1000 linearly spaced values between 0 and 1,

inclusive.

d.	 If x is distance and y is height, the equations below describe their dependence on

time and all the other parameters (initial height h , gravitational acceleration g , initial

ball velocity v , angle of velocity vector in degrees θ). Solve for x and y

i. () cos
180

x t v t
πθ =

. We multiply θ by

180

π
to convert degrees to radians.

ii. () 21
sin

180 2
y t h v t gt

πθ = + −

e. Approximate when the ball hits the ground.

i. Find the index when the height first becomes negative (use find).

ii. The distance at which the ball hits the ground is value of x at that index

iii. Display the words: The ball hits the ground at a distance of X meters. (where X is

the distance you found in part ii above)

f. Plot the ball’s trajectory

i. Open a new figure (use figure)

ii. Plot the ball’s height on the y axis and the distance on the x axis (plot)

iii. Label the axes meaningfully and give the figure a title (use xlabel, ylabel, and

title)

iv. Hold on to the figure (use hold on)

v. Plot the ground as a dashed black line. This should be a horizontal line going

from 0 to the maximum value of x (use max). The height of this line should be

0. (see help plot for line colors and styles)

g. Run the script from the command window and verify that the ball indeed hits the

ground around the distance you estimated in e,ii. You should get something like this:

9

Jan. 25, 2010	 Homework 1 6.094: Introduction to Matlab

Ball Trajectory

B
al

l H
ei

gh
t

(m
)

2

1.5

1

0.5

0

-0.5

-1
0	 0.5 1 1.5 2 2.5 3

Distance (m)

10

Jan. 25, 2010 Homework 1 6.094: Introduction to Matlab

12. Optional: Write a simple shuffling ‘encryption’ algorithm.

a. Open a new script and save it as encrypt.m

b. At the top of the script, define the original string to be: This is my top secret message!

c. Next, let’s shuffle the indices of the letters. To do this, we need to make a string of

encoding indices

i. Make a vector that has the indices from 1 to the length of the original string in a

randomly permuted order. Use randperm and length

ii. Encode the original string by using your encoding vector as indices into

original . Name the encoded message encoded .

d. Now, we need to figure out the decoding key to match the encoding key we just made.

i. Assemble a temporary matrix where the first column is the encoding vector you

made in the previous part and the second column are the integers from 1 to the

length of the original string in order. Use length, and you may need to transpose

some vectors to make them columns using ‘.

ii. Next, we want to sort the rows of this temporary matrix according to the values

in the first column. Use sortrows.

iii. After it’s been sorted, extract the second column of the temporary matrix. This

is your decoding vector.

iv. To make the decoded message, use the decoding vector as indices into

encoded .
e. Display the original, encoded, and decoded messages

i. Display the following three strings, where : original , encoded , and decoded

are the strings you made above. Use disp

Original: original

Encoded: encoded
Decoded: decoded

f. Compare the original and decoded strings to make sure they’re identical and display the

result

i. Use strcmp to compare the original and decoded strings. Name the output

of this operation correct . correct will have the value 1 if the strings match

and the value 0 if they don’t

ii. Display the following string: Decoded correctly (1 true, 0 false): correct
use disp and num2str

g. Run the script a few times to verify that it works well. You should see an output like this:

11

MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

