
Jan. 26, 2010 Homework 2 6.094: Introduction to Matlab


Homework 2


This homework is designed to give you practice with writing functions and visualizing data. This 

assignment will give you more freedom than Homework 1 to choose how you implement your functions. 

You will just be graded on whether your functions produce the correct output, but not necessarily on 

how efficiently they’re written. As before, the names of helpful functions are provided in bold where 

needed. Homework must be submitted before the start of the next class. 

What to turn in: Copy the text from your scripts and paste it into a document. If a question asks you to 

plot or display something to the screen, also include the plot and screen output your code generates. 

Submit either a *.doc or *.pdf file. 

Keep all your code in scripts. If a specific name is not mentioned in the problem statement, you can 

choose your own script names. 

1. Semilog plot. Over the past 5 years, the number of students in 6.094 has been 15, 25, 55, 115, 

144. Class size seems like it’s growing exponentially. To verify this, plot these values on a plot 

with a log y scale and label it (semilogy, xlabel, ylabel, title). Use magenta square symbols of 

marker size 10 and line width 4, and no line connecting them. You may have to change the x 

limits to see all 5 symbols (xlim). If the relationship really is exponential, it will look linear on a 

log plot. 
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3.	 Bar graph. Make a vector of 5 random values and plot them on a bar graph using red bars, 

something like the figure below. 
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4. Interpolation and surface plots. Write a script called randomSurface.m to do the following 

a. To make a random surface, make Z0 a 5x5 matrix of random values on the range [0,1] 

(rand). 

b. Make an X0 and Y0 using meshgrid and the vector 1:5 (use the same vector for both 

inputs into meshgrid). Now, X0, Y0, and Z0 define 25 points on a surface. 

c. We are going to interpolate intermediate values to make the surface seem smooth. 

Make X1 and Y1 using meshgrid and the vector 1:.1:5 (again use the same vector for 

both inputs into meshgrid). 

d. Make Z1 by interpolating X0, Y0, and Z0 at the positions in X1 and Y1 using cubic 

interpolation (interp2, specify cubic as the interpolation method). 

e. Plot a surface plot of Z1. Set the colormap to hsv and the shading property to interp 

(surf, colormap, shading). 

f. Hold on to the axes and plot the 15-line contour on the same axes (contour). 

g. Add a colorbar (colorbar). 

h. Set the color axis to be from 0 to 1 (caxis). The final figure should look something like 

this (if the figure isn’t copy/pasting into your document appropriately, try changing the 

figure copy options to use a bitmap): 

5. Fun with find. Write a function to return the index of the value that is nearest to a desired 

value. The function declaration should be: ind=findNearest(x, desiredVal) . x is a 

vector or matrix of values, and desiredVal is the scalar value you want to find. Do not 

assume that desiredVal exists in x , rather find the value that is closest to desiredVal . If 

multiple values are the same distance from desiredVal , return all of their indices. Test your 

function to make sure it works on a few vectors and matrices. Useful functions are abs, min, and 

find. Hint: You may have some trouble using min when x is a matrix. To convert a matrix Q into 

a vector you can do something like y=Q(:) . Then, doing m=min(y) will give you the 

minimum value in Q. To find where this minimum occurs in Q, do inds=find(Q==m); . 
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6.	 Loops and flow control. Make function called loopTest(N) that loops through the values 1 

through N and for each number n it should display ‘n is divisible by 2’, ‘n is divisible by 3’, ‘n is 

divisible by 2 AND 3’ or ‘n is NOT divisible by 2 or 3’. Use a for loop, the function mod or rem to 

figure out if a number is divisible by 2 or 3, and num2str to convert each number to a string for 

displaying. You can use any combination of if, else, and elseif. 

7.	 Smoothing filter. Although it is a really useful function, Matlab does not contain an easy to use 

smoothing filter. Write a function with the declaration: smoothed=rectFilt(x,width). 

The filter should take a vector of noisy data (x ) and smooth it by doing a symmetric moving 

average with a window of the specified width . For example if width=5 , then smoothed(n) 

should equal mean(x(n-2:n+2)) . Note that you may have problems around the edges: 

when n<3 and n>length(x)-2 . 

a.	 The lengths of x and smoothed should be equal. 

b.	 For symmetry to work, make sure that width is odd. If it isn’t, increase it by 1 to make 

it odd and display a warning, but still do the smoothing. 

c.	 Make sure you correct edge effects so that the smoothed function doesn’t deviate from 

the original at the start or the end. Also make sure you don’t have any horizontal offset 

between the smoothed function and the original (since we’re using a symmetric moving 

average, the smoothed values should lie on top of the original data). 

d.	 You can do this using a loop and mean (which should be easy but may be slow), or more 

efficiently by using conv (if you are familiar with convolution). 

e.	 Load the mat file called noisyData.mat. It contains a variable x which is a noisy line. Plot 

the noisy data as well as your smoothed version, like below (a width of 11 was used): 
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Optional Problems


8.	 Optional: Plot a circle. It’s not immediately obvious how to plot a circle in Matlab. Write the 

function [x,y]=getCircle(center,r) to get the x and y coordinates of a circle. The 

circle should be centered at center (2-element vector containing the x and y values of the 

center) and have radius r . Return x and y such that plot(x,y) will plot the circle. 

x (t ) = cos (t ) 
a.	 Recall that for a circle at the origin (0,0), the following is true: , for t on 

y t ( ) = ( ) sin	 t 

the range [0, 2π ] . Now, you just have to figure out how to scale and translate it. 

b.	 Write a script called concentric.m . In this script, open a new figure and plot five 

circles, all centered at the origin and with increasing radii. Set the line width for each 

circle to something thick (at least 2 points), and use the colors from a 5-color jet 

colormap (jet). The property names for line width and color are ‘LineWidth’ and 

‘Color’ , respectively. Other useful function calls are hold on and axis equal. It should 

look something like this 
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c.	 Make a script called olympic.m . This script should use your getCircle function to 

draw the Olympic logo, as shown below. Don’t worry about making the circles overlap in 

the same way as the official logo (it’s possible but is too complicated for now). Also, 

when specifying colors, you can use the same color codes as when plotting lines (‘b’ for 
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blue, ‘k’ for black, etc.) instead of providing an RGB vector.
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9.	 Optional: Functions. If you wrote the ball throwing script for Homework 1, turn it into a 

function. Add a function declaration that takes v and theta as inputs and returns the 

distance at which the ball hits the ground: distance=throwBall(v,theta) . We 

generally don’t want functions to plot things every time they run, so remove the figure 

command and any plotting commands from the function. To be able to simulate a wide range of 

v and theta, make the time go until 10sec and add an if statement that will display the warning 

‘The ball does not hit the ground in 10 seconds’ if that turns out to be the case. Also, if the ball 

doesn’t hit the ground in 10 seconds, you should return NaN as the distance . To test your 

function, write a script testBall.m to throw the ball with the same velocity v but different 

angles and plot the distance as a function of angle theta . The plot should look something like 

the figure below. You will need to run throwBall within a loop in order to calculate the 

distances for various thetas . 
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10. Optional: Smoothing nonuniformly sampled data. Modify your smoothing filter above to also 

works on data that isn’t sampled at a constant rate. Modify the program to also accept x if it is 

an Nx2 matrix, where the first column is the x values and the second column is the y values of 

the data points (such that doing plot(x(:,1),x(:,2),’.’ ) would plot the data). In this 

case, width should be on the same scale as the scale of the x values, so for example if the x(:,1) 

values are on the range [0,1], a width of 0.2 is acceptable. Also, in this case the width doesn’t 

have to be odd as before. Assume that the x values are in increasing order. The output should 

also be an Nx2 matrix, where the first column is the same as the first column in x , and the 

second column contains the smoothed values. The most efficient way to do this is unclear; you 

may find the interpolating function interp1 helpful, but you can definitely do this without using 

it. The file optionalData.mat contains a matrix x that you can test your function on. When 

smoothed with a width of 2, you should get a result like: 
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11. Optional: Buy and sell a stock. Write the following function: 

endValue=tradeStock(initialInvestment, price, buy, sell) 

The weekly price of Google stock from 8/23/2004 until 1/11/2010 is saved in the file 

googlePrices.mat. This file also contains two other vectors: peaks and lows . The peaks 

vector contains indices into the price vector when the stock peaked, and the lows vector 

contains indices into the price vector when the stock hit a low. Run your program so that it 

buys stock when it’s low, and sell it when it’s high. Below is a list of specifications. 

a. The inputs are: initialInvestment – the amount of money you have to invest at 

the beginning, in dollars; price – a vector of stock prices over time; buy – a vector of 

times when to buy (should just be integers that index into the price vector); sell – a 

vector of times when to sell (similar to the buy vector). endValue is the end value of 

your investment. If all of your stock isn’t sold at the end, use the last price of the stock 

to calculate how much it’s worth and add it to your available cash. Make the function 

general so that it will work with any given price , buy and sell vectors. 

b. You can only buy integer numbers of shares of stock (you can’t buy 3.23 shares). You 

also can’t buy more stock than you can afford (if the current price is $100 and you have 

$599 in cash, you can only buy 5 shares). When deciding how much you can buy, factor 

in the transaction cost (see next section) so that you don’t go negative. When buying, 

always buy as many shares as you can, and when selling, sell all your shares. 

c. Each buy or sell transaction costs you $12.95, make sure you include this in your 

program. If your initial investment is small, you may not be able to carry out all the buy 

and sell orders. It may also not make sense to sell at each specified time: for example if 

you bought 10 shares of stock and the price increases by $1, it doesn’t make sense to 

sell it since the transaction cost would eat up all your profit and cost you $2.95 extra. 

However you can’t make the decision of whether to buy or not since you don’t know 

where the price is going to go (you can’t look forward in time). You don’t have to be 

super clever about deciding whether to sell or not, but you can if you’re so inclined. 

d. After it’s complete, run your program with various initial investments. Load 

googlePrices.mat into your workspace and then run the function using the price , 

peaks , and lows vectors. To check that you did it right, try an initial investment of 

$100. This should give you an end value of $100. Also try an initial investment of 

$100000, which should result in a total value of about $61,231,407 (with a $100,000 

initial investment, it turns out that you don’t even have to decide whether it’s a good 

idea to sell because the transaction cost becomes negligible compared to the number of 

shares you have). 
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