
Jan. 26, 2010 Homework 2 6.094: Introduction to Matlab

Homework 2

This homework is designed to give you practice with writing functions and visualizing data. This

assignment will give you more freedom than Homework 1 to choose how you implement your functions.

You will just be graded on whether your functions produce the correct output, but not necessarily on

how efficiently they’re written. As before, the names of helpful functions are provided in bold where

needed. Homework must be submitted before the start of the next class.

What to turn in: Copy the text from your scripts and paste it into a document. If a question asks you to

plot or display something to the screen, also include the plot and screen output your code generates.

Submit either a *.doc or *.pdf file.

Keep all your code in scripts. If a specific name is not mentioned in the problem statement, you can

choose your own script names.

1. Semilog plot. Over the past 5 years, the number of students in 6.094 has been 15, 25, 55, 115,

144. Class size seems like it’s growing exponentially. To verify this, plot these values on a plot

with a log y scale and label it (semilogy, xlabel, ylabel, title). Use magenta square symbols of

marker size 10 and line width 4, and no line connecting them. You may have to change the x

limits to see all 5 symbols (xlim). If the relationship really is exponential, it will look linear on a

log plot.

1

Jan. 26, 2010 Homework 2 6.094: Introduction to Matlab

3.	 Bar graph. Make a vector of 5 random values and plot them on a bar graph using red bars,

something like the figure below.

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bar Graph of 5 Random Values

2

Problem 2 removed due to copyright restrictions.

Jan. 26, 2010 Homework 2 6.094: Introduction to Matlab

4. Interpolation and surface plots. Write a script called randomSurface.m to do the following

a. To make a random surface, make Z0 a 5x5 matrix of random values on the range [0,1]

(rand).

b. Make an X0 and Y0 using meshgrid and the vector 1:5 (use the same vector for both

inputs into meshgrid). Now, X0, Y0, and Z0 define 25 points on a surface.

c. We are going to interpolate intermediate values to make the surface seem smooth.

Make X1 and Y1 using meshgrid and the vector 1:.1:5 (again use the same vector for

both inputs into meshgrid).

d. Make Z1 by interpolating X0, Y0, and Z0 at the positions in X1 and Y1 using cubic

interpolation (interp2, specify cubic as the interpolation method).

e. Plot a surface plot of Z1. Set the colormap to hsv and the shading property to interp

(surf, colormap, shading).

f. Hold on to the axes and plot the 15-line contour on the same axes (contour).

g. Add a colorbar (colorbar).

h. Set the color axis to be from 0 to 1 (caxis). The final figure should look something like

this (if the figure isn’t copy/pasting into your document appropriately, try changing the

figure copy options to use a bitmap):

5. Fun with find. Write a function to return the index of the value that is nearest to a desired

value. The function declaration should be: ind=findNearest(x, desiredVal) . x is a

vector or matrix of values, and desiredVal is the scalar value you want to find. Do not

assume that desiredVal exists in x , rather find the value that is closest to desiredVal . If

multiple values are the same distance from desiredVal , return all of their indices. Test your

function to make sure it works on a few vectors and matrices. Useful functions are abs, min, and

find. Hint: You may have some trouble using min when x is a matrix. To convert a matrix Q into

a vector you can do something like y=Q(:) . Then, doing m=min(y) will give you the

minimum value in Q. To find where this minimum occurs in Q, do inds=find(Q==m); .

3

Jan. 26, 2010	 Homework 2 6.094: Introduction to Matlab

6.	 Loops and flow control. Make function called loopTest(N) that loops through the values 1

through N and for each number n it should display ‘n is divisible by 2’, ‘n is divisible by 3’, ‘n is

divisible by 2 AND 3’ or ‘n is NOT divisible by 2 or 3’. Use a for loop, the function mod or rem to

figure out if a number is divisible by 2 or 3, and num2str to convert each number to a string for

displaying. You can use any combination of if, else, and elseif.

7.	 Smoothing filter. Although it is a really useful function, Matlab does not contain an easy to use

smoothing filter. Write a function with the declaration: smoothed=rectFilt(x,width).

The filter should take a vector of noisy data (x) and smooth it by doing a symmetric moving

average with a window of the specified width . For example if width=5 , then smoothed(n)

should equal mean(x(n-2:n+2)) . Note that you may have problems around the edges:

when n<3 and n>length(x)-2 .

a.	 The lengths of x and smoothed should be equal.

b.	 For symmetry to work, make sure that width is odd. If it isn’t, increase it by 1 to make

it odd and display a warning, but still do the smoothing.

c.	 Make sure you correct edge effects so that the smoothed function doesn’t deviate from

the original at the start or the end. Also make sure you don’t have any horizontal offset

between the smoothed function and the original (since we’re using a symmetric moving

average, the smoothed values should lie on top of the original data).

d.	 You can do this using a loop and mean (which should be easy but may be slow), or more

efficiently by using conv (if you are familiar with convolution).

e.	 Load the mat file called noisyData.mat. It contains a variable x which is a noisy line. Plot

the noisy data as well as your smoothed version, like below (a width of 11 was used):

-1.5

-1

-0.5

0

0.5

1

1.5

D
at

a
V

al
ue

Smoothing Illustration

Original Data

Smoothed

0 10 20 30 40 50 60 70 80 90 100
Index

4

Jan. 26, 2010	 Homework 2 6.094: Introduction to Matlab

Optional Problems

8.	 Optional: Plot a circle. It’s not immediately obvious how to plot a circle in Matlab. Write the

function [x,y]=getCircle(center,r) to get the x and y coordinates of a circle. The

circle should be centered at center (2-element vector containing the x and y values of the

center) and have radius r . Return x and y such that plot(x,y) will plot the circle.

x (t) = cos (t)
a.	 Recall that for a circle at the origin (0,0), the following is true: , for t on

y t () = () sin	 t

the range [0, 2π] . Now, you just have to figure out how to scale and translate it.

b.	 Write a script called concentric.m . In this script, open a new figure and plot five

circles, all centered at the origin and with increasing radii. Set the line width for each

circle to something thick (at least 2 points), and use the colors from a 5-color jet

colormap (jet). The property names for line width and color are ‘LineWidth’ and

‘Color’ , respectively. Other useful function calls are hold on and axis equal. It should

look something like this

4

3

2

1

0

-1

-2

-3

-4

-6 -4 -2 0 2 4 6

c.	 Make a script called olympic.m . This script should use your getCircle function to

draw the Olympic logo, as shown below. Don’t worry about making the circles overlap in

the same way as the official logo (it’s possible but is too complicated for now). Also,

when specifying colors, you can use the same color codes as when plotting lines (‘b’ for

5

Jan. 26, 2010 Homework 2 6.094: Introduction to Matlab

blue, ‘k’ for black, etc.) instead of providing an RGB vector.

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1 -0.5 0 0.5 1

6

Jan. 26, 2010	 Homework 2 6.094: Introduction to Matlab

9.	 Optional: Functions. If you wrote the ball throwing script for Homework 1, turn it into a

function. Add a function declaration that takes v and theta as inputs and returns the

distance at which the ball hits the ground: distance=throwBall(v,theta) . We

generally don’t want functions to plot things every time they run, so remove the figure

command and any plotting commands from the function. To be able to simulate a wide range of

v and theta, make the time go until 10sec and add an if statement that will display the warning

‘The ball does not hit the ground in 10 seconds’ if that turns out to be the case. Also, if the ball

doesn’t hit the ground in 10 seconds, you should return NaN as the distance . To test your

function, write a script testBall.m to throw the ball with the same velocity v but different

angles and plot the distance as a function of angle theta . The plot should look something like

the figure below. You will need to run throwBall within a loop in order to calculate the

distances for various thetas .

Distance of ball throw as a function of release angle

D
is

ta
nc

e
th

ro
w

n
(m

)

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2
0 10 20 30 40 50 60

Initial Angle (deg)

7

Jan. 26, 2010 Homework 2 6.094: Introduction to Matlab

10. Optional: Smoothing nonuniformly sampled data. Modify your smoothing filter above to also

works on data that isn’t sampled at a constant rate. Modify the program to also accept x if it is

an Nx2 matrix, where the first column is the x values and the second column is the y values of

the data points (such that doing plot(x(:,1),x(:,2),’.’) would plot the data). In this

case, width should be on the same scale as the scale of the x values, so for example if the x(:,1)

values are on the range [0,1], a width of 0.2 is acceptable. Also, in this case the width doesn’t

have to be odd as before. Assume that the x values are in increasing order. The output should

also be an Nx2 matrix, where the first column is the same as the first column in x , and the

second column contains the smoothed values. The most efficient way to do this is unclear; you

may find the interpolating function interp1 helpful, but you can definitely do this without using

it. The file optionalData.mat contains a matrix x that you can test your function on. When

smoothed with a width of 2, you should get a result like:

Smoothing Illustration, nonuniform spacing

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Y
 V

al
ue

Original Data

Smoothed

0 1 2 3 4 5 6 7 8 9 10
X Value

8

Jan. 26, 2010 Homework 2 6.094: Introduction to Matlab

11. Optional: Buy and sell a stock. Write the following function:

endValue=tradeStock(initialInvestment, price, buy, sell)

The weekly price of Google stock from 8/23/2004 until 1/11/2010 is saved in the file

googlePrices.mat. This file also contains two other vectors: peaks and lows . The peaks

vector contains indices into the price vector when the stock peaked, and the lows vector

contains indices into the price vector when the stock hit a low. Run your program so that it

buys stock when it’s low, and sell it when it’s high. Below is a list of specifications.

a. The inputs are: initialInvestment – the amount of money you have to invest at

the beginning, in dollars; price – a vector of stock prices over time; buy – a vector of

times when to buy (should just be integers that index into the price vector); sell – a

vector of times when to sell (similar to the buy vector). endValue is the end value of

your investment. If all of your stock isn’t sold at the end, use the last price of the stock

to calculate how much it’s worth and add it to your available cash. Make the function

general so that it will work with any given price , buy and sell vectors.

b. You can only buy integer numbers of shares of stock (you can’t buy 3.23 shares). You

also can’t buy more stock than you can afford (if the current price is $100 and you have

$599 in cash, you can only buy 5 shares). When deciding how much you can buy, factor

in the transaction cost (see next section) so that you don’t go negative. When buying,

always buy as many shares as you can, and when selling, sell all your shares.

c. Each buy or sell transaction costs you $12.95, make sure you include this in your

program. If your initial investment is small, you may not be able to carry out all the buy

and sell orders. It may also not make sense to sell at each specified time: for example if

you bought 10 shares of stock and the price increases by $1, it doesn’t make sense to

sell it since the transaction cost would eat up all your profit and cost you $2.95 extra.

However you can’t make the decision of whether to buy or not since you don’t know

where the price is going to go (you can’t look forward in time). You don’t have to be

super clever about deciding whether to sell or not, but you can if you’re so inclined.

d. After it’s complete, run your program with various initial investments. Load

googlePrices.mat into your workspace and then run the function using the price ,

peaks , and lows vectors. To check that you did it right, try an initial investment of

$100. This should give you an end value of $100. Also try an initial investment of

$100000, which should result in a total value of about $61,231,407 (with a $100,000

initial investment, it turns out that you don’t even have to decide whether it’s a good

idea to sell because the transaction cost becomes negligible compared to the number of

shares you have).

9

MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

