Motif finding in groups of related sequences

Challenges in Computational Biology

Overview

Introduction

- Bio review: Where do ambiguities come from?
- Computational formulation of the problem

Combinatorial solutions

- Exhaustive search
- Greedy motif clustering
- Wordlets and motif refinement

- Expectation maximization
- Gibbs sampling

Overview

Introduction

- Bio review: Where do ambiguities come from?
- Computational formulation of the problem

Combinatorial solutions

- Exhaustive search
- Greedy motif clustering
- Wordlets and motif refinement

- Expectation maximization
- Gibbs sampling

Regulatory motif discovery

- Regulatory motifs
 - Genes are turned on / off in response to changing environments
 - No direct addressing: subroutines (genes) contain sequence tags (motifs)
 - Specialized proteins (transcription factors) recognize these tags
- What makes motif discovery hard?
 - Motifs are short (6-8 bp), sometimes degenerate
 - Can contain any set of nucleotides (no ATG or other rules)
 - Act at variable distances upstream (or downstream) of target gene

Sticks and backbones

Where do ambiguous bases come from ?

Figures by MIT OCW.

Characteristics of Regulatory Motifs

ΑΤΑΤΑΑΑ ΤΤ Τ CTG-ATA A___ACAG AGGG_GG AGC CG ΤΤΤΑΑΤ ΑΑ ΑΑ G_AA_CG_TTGCG A A TTA A TA GGGACGAG G A = GA = AA = AT ATSAA A۵ S-T-T T TA AAAA SATAAT TT ATTA ATTAAAAATT

Tiny

- Highly Variable
- ~Constant Size
 - Because a constant-size transcription factor binds
- Often repeated
- Low-complexity-ish

Sequence Logos

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.

entropy - n

- 1: (communication theory) a numerical measure of the uncertainty of an outcome; "the signal contained thousands of bits of information" [information, selective information]
- 2: (thermodynamics) a thermodynamic quantity representing the amount of energy in a system that is no longer available for doing mechanical work; "entropy increases as matter and energy in the universe degrade to an ultimate state of inert uniformity" [randomness]
- Entropy at pos'n I, H(i)
 - = $-\Sigma_{\{\text{letter }x\}}$ freq(x, i) log₂ freq(x, i) Height of x at pos'n i, L(x, i) = freq(x, i) (2 - H(i))
 - Examples:

 - freq(A, i) = 1; H(i) = 0; L(A, i) = 2• A: $\frac{1}{2}$; C: $\frac{1}{4}$; G: $\frac{1}{4}$; H(i) = 1.5; L(A, i) = $\frac{1}{4}$; L(not T, i) = $\frac{1}{4}$

Problem Definition

Given a collection of promoter sequences s_1, \ldots, s_N of genes with common expression

Combinatorial

Motif M: $m_1 \dots m_W$ Some of the m_i 's blank

- Find M that occurs in all s_i with ≤ k differences
- Or, Find M with smallest total hamming dist

Probabilistic

Motif: M_{ij} ; $1 \le i \le W$ $1 \le j \le 4$ M_{ii} = Prob[letter j, pos i]

Find best M, and positions p_1, \ldots, p_N in sequences

Finding Regulatory Motifs

Given a collection of genes bound by a transcription factor, Find the TF-binding motif in common

Essentially a Multiple Local Alignment

- Find "best" multiple local alignment
- Alignment score defined differently in probabilistic/combinatorial cases

Introduction

- Bio review: Where do ambiguities come from?
- Computational formulation of the problem

Combinatorial solutions

- Exhaustive search
- Greedy motif clustering
- Wordlets and motif refinement

- Expectation maximization
- Gibbs sampling

Discrete Formulations

Given sequences $S = \{x^1, ..., x^n\}$

- A motif W is a consensus string w₁...w_K
- Find motif W^{*} with "best" match to x¹, ..., xⁿ

Definition of "best":

d(W, xⁱ) = min hamming dist. between W and any word in xⁱ d(W, S) = \sum_{i} d(W, xⁱ)

Introduction

- Bio review: Where do ambiguities come from?
- Computational formulation of the problem
- Combinatorial solutions
 - Exhaustive search
 - Greedy motif clustering
 - Wordlets and motif refinement

- Expectation maximization
- Gibbs sampling

Exhaustive Searches

1. Pattern-driven algorithm:

```
For W = AA...A to TT...T (4^{\kappa} \text{ possibilities})
Find d(W, S)
Report W* = argmin( d(W, S) )
```

```
Running time: O( K N 4^{K} )
(where N = \Sigma_i |x^i|)
```

Advantage: Finds provably "best" motif W Disadvantage: Time

2. Sample-driven algorithm:

```
For W = any K-long word occurring in some x<sup>i</sup>
Find d( W, S )
```

```
Report W* = argmin( d( W, S ) )
or, Report a local improvement of W*
```

```
Running time: O( K N<sup>2</sup> )
```

Advantage: Time

Disadvantage: If the true motif is weak and does not occur in data

then a random motif may score better than any instance of true motif

Introduction

- Bio review: Where do ambiguities come from?
- Computational formulation of the problem
- Combinatorial solutions
 - Exhaustive search
 - Greedy motif clustering
 - Wordlets and motif refinement
- Probabilistic solutions
 - Expectation maximization
 - Gibbs sampling

Greedy motif clustering (CONSENSUS)

Algorithm:

Cycle 1:

For each word W in S (of fixed length!) For each word W' in S Create alignment (gap free) of W, W'

Keep the C_1 best alignments, $A_1, ..., A_{C1}$

ACGGTTG , CGAACTT , GGGCTCT ... ACGCCTG , AGAACTA , GGGGTGT ...

Greedy motif clustering (CONSENSUS)

Algorithm:

<u>Cycle t</u>: For each word W in S For each alignment A_j from cycle t-1 Create alignment (gap free) of W, A_j

Keep the C_I best alignments $A_1, ..., A_{Ct}$

ACGGTTG	,	CGAACTT	,	GGGCTCT
ACGCCTG	,	AGAACTA	,	GGGGTGT
•••				•••
ACGGCTC	,	AGATCTT	,	GGCGTCT

Greedy motif clustering (CONSENSUS)

- C₁, ..., C_n are user-defined heuristic constants
 - N is sum of sequence lengths
 - n is the number of sequences

Running time:

 $O(N^2) + O(N C_1) + O(N C_2) + ... + O(N C_n)$

= O(N² + NC_{total})

Where $C_{total} = \Sigma_i C_i$, typically O(nC), where C is a big constant

Introduction

- Bio review: Where do ambiguities come from?
- Computational formulation of the problem

Combinatorial solutions

- Exhaustive search
- Greedy motif clustering
- Wordlets and motif refinement

- Expectation maximization
- Gibbs sampling

Motif Refinement and wordlets (MULTIPROFILER)

• Extended sample-driven approach

Given a K-long word W, define:

 $N_{\alpha}(W)$ = words W' in S s.t. $d(W,W') \le \alpha$

ldea:

Assume W is occurrence of true motif W^{*} Will use $N_{\alpha}(W)$ to correct "errors" in W

Motif Refinement and wordlets (MULTIPROFILER)

Assume W differs from true motif W^{*} in at most L positions

Define:

A wordlet G of W is a L-long pattern with blanks, differing from W

- L is smaller than the word length K

Example:

- K = 7; L = 3
- W = ACGTTGA
- G = --A -CG

Motif Refinement and wordlets (MULTIPROFILER)

Algorithm:

For each W in S: For L = 1 to L_{max} 1. Find the α -neighbors of W in S $\rightarrow N_{\alpha}(W)$ 2. Find all "strong" L-long wordlets G in $N_{a}(W)$ 3. For each wordlet G, 1. Modify W by the wordlet G $\rightarrow W'$ 2. Compute d(W', S)

Report W^{*} = argmin d(W['], S)

Step 1 above: Smaller motif-finding problem; Use exhaustive search