
6.096 – Algorithms for Computational Biology

Motif finding in groups 
of related sequences
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Challenges in Computational Biology

5 Regulatory motif discovery
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Regulatory motif discovery

ATGACTAAATCTCATTCAGAAGAA

GAL1

CCCCWCGG CCG

Gal4 Mig1

CGG CCG

Gal4

• Regulatory motifs
– Genes are turned on / off in response to changing environments
– No direct addressing:  subroutines (genes) contain sequence tags (motifs)
– Specialized proteins (transcription factors) recognize these tags

• What makes motif discovery hard?
– Motifs are short (6-8 bp), sometimes degenerate
– Can contain any set of nucleotides (no ATG or other rules)
– Act at variable distances upstream (or downstream) of target gene



Sticks and backbones

Traditional

In fact, the two DNA strands are twisted 
around each other to make a double helix.

Fancy Chemical Atomic

Figure by MIT OCW.



Where do ambiguous bases come from ?
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Characteristics of Regulatory Motifs

• Tiny

• Highly Variable

• ~Constant Size
– Because a constant-size 

transcription factor binds

• Often repeated

• Low-complexity-ish



Sequence Logos

entropy - n
1: (communication theory) a numerical measure of the uncertainty of an 

outcome; "the signal contained thousands of bits of information"
[information, selective information] 

2: (thermodynamics) a thermodynamic quantity representing the amount 
of energy in a system that is no longer available for doing mechanical 
work; "entropy increases as matter and energy in the universe degrade 
to an ultimate state of inert uniformity" [randomness]

• Entropy at pos’n I, H(i) = – Σ{letter x} freq(x, i) log2 freq(x, i)
• Height of x at pos’n i, L(x, i) = freq(x, i) (2 – H(i))

– Examples: 
• freq(A, i) = 1; H(i) = 0; L(A, i) = 2
• A: ½;  C: ¼;  G: ¼; H(i) = 1.5; L(A, i) = ¼;  L(not T, i) = ¼

Image removed due 
to copyright restrictions.

Image removed due to copyright restrictions.



Problem Definition

Given a collection of promoter sequences s1,…, sN of 
genes with common expression

Combinatorial

Motif M: m1…mW

Some of the mi’s blank

• Find M that occurs in all si
with ≤ k differences

• Or, Find M with smallest 
total hamming dist

Probabilistic

Motif: Mij; 1 ≤ i ≤ W
1 ≤ j ≤ 4

Mij = Prob[ letter j, pos i ]

Find best M, and positions p1,…, 
pN in sequences



Finding Regulatory Motifs

.

.

.

Given a collection of genes bound by a transcription factor,
Find the TF-binding motif in common



Essentially a Multiple Local Alignment

.

.

.

• Find “best” multiple local alignment

• Alignment score defined differently in 
probabilistic/combinatorial cases
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Discrete Formulations
Given sequences S = {x1, …, xn}

• A motif W is a consensus string w1…wK

• Find motif W* with “best” match to x1, …, xn

Definition of “best”:

d(W, xi) = min hamming dist. between W and any word in xi

d(W, S) = Σi d(W, xi)
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Exhaustive Searches
1. Pattern-driven algorithm:

For W = AA…A to TT…T (4K possibilities)
Find d( W, S )

Report W* = argmin( d(W, S) )

Running time: O( K N 4K )
(where N = Σi |xi|)

Advantage: Finds provably “best” motif W
Disadvantage: Time



Exhaustive Searches
2. Sample-driven algorithm:

For W = any K-long word occurring in some xi

Find d( W, S )

Report W* = argmin( d( W, S ) )
or, Report a local improvement of W*

Running time: O( K N2 )

Advantage: Time

Disadvantage: If  the true motif is weak and does not occur in data

then a random motif may score better than any 
instance of true motif
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Greedy motif clustering (CONSENSUS)
Algorithm:

Cycle 1:
For each word W in S (of fixed length!)

For each word W’ in S
Create alignment (gap free) of W, W’

Keep the C1 best alignments, A1, …, AC1

ACGGTTG , CGAACTT , GGGCTCT …
ACGCCTG , AGAACTA , GGGGTGT …



Greedy motif clustering (CONSENSUS)
Algorithm:

Cycle t:
For each word W in S

For each alignment Aj from cycle t-1
Create alignment (gap free) of W, Aj

Keep the Cl best alignments A1, …, ACt

ACGGTTG , CGAACTT , GGGCTCT …
ACGCCTG , AGAACTA , GGGGTGT …
… … …
ACGGCTC , AGATCTT , GGCGTCT …



Greedy motif clustering (CONSENSUS)

• C1, …, Cn are user-defined heuristic constants

– N is sum of sequence lengths
– n is the number of sequences

Running time:

O(N2) + O(N C1) + O(N C2) + … + O(N Cn)

= O( N2 + NCtotal)

Where Ctotal = Σi Ci, typically O(nC), where C is a big constant
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Motif Refinement and wordlets (MULTIPROFILER)
• Extended sample-driven approach

Given a K-long word W,  define: 

Nα(W) = words W’ in S s.t. d(W,W’) ≤ α

Idea:
Assume W is occurrence of true motif W*

Will use Nα(W) to correct “errors” in W



Motif Refinement and wordlets (MULTIPROFILER)
Assume W differs from true motif W* in at most L positions

Define: 

A wordlet G of W is a L-long pattern with blanks, differing from W
– L is smaller than the word length K

Example: 

K = 7; L = 3

W  =  ACGTTGA
G  =  --A--CG



Motif Refinement and wordlets (MULTIPROFILER)
Algorithm:

For each W in S:
For L = 1 to Lmax

1. Find the α-neighbors of W in S → Nα(W)
2. Find all “strong” L-long wordlets G in Na(W)
3. For each wordlet G,

1. Modify W by the wordlet G → W’
2. Compute d(W’, S)

Report W* = argmin d(W’, S)

Step 1 above: Smaller motif-finding problem; 
Use exhaustive search
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