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Sequence Motifs

• what is a sequence motif ?
– a sequence pattern of biological significance

• examples
– protein binding sites in DNA
– protein sequences corresponding to common 

functions or conserved pieces of structure



Motifs and Profile Matrices
• given a set of aligned sequences, it is 

straightforward to construct a profile matrix 
characterizing a motif of interest
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Motifs and Profile Matrices
• how can we construct the profile if the sequences 

aren’t aligned?
– in the typical case we don’t know what the motif 

looks like

• use an Expectation Maximization (EM) algorithm



The EM Approach
• EM is a family of algorithms for learning 

probabilistic models in problems that involve 
hidden state

• in our problem, the hidden state is where the motif 
starts in each training sequence



The MEME Algorithm

• Bailey & Elkan, 1993
• uses EM algorithm to find multiple motifs in a set 

of sequences
• first EM approach to motif discovery: Lawrence & 

Reilly 1990



Representing Motifs

• a motif is assumed to have a fixed width, W
• a motif is represented by a matrix of    

probabilities:         represents the probability of 
character c in column k

• example: DNA motif with W=3

ckp

1    2    3
A  0.1  0.5  0.2
C  0.4  0.2  0.1
G  0.3  0.1  0.6
T  0.2  0.2  0.1

=p



Representing Motifs

• we will also represent the “background” (i.e. 
outside the motif) probability of each character

• represents the probability of character c in 
the background

• example:

0cp

A  0.26
C  0.24
G  0.23  
T  0.27

=0p



Basic EM Approach
• the element        of the matrix       represents the 

probability that the motif starts in position j in 
sequence I

• example: given 4 DNA sequences of length 6, 
where W=3

Z

1    2    3    4
seq1  0.1  0.1  0.2  0.6
seq2  0.4  0.2  0.1  0.3
seq3  0.3  0.1  0.5  0.1
seq4  0.1  0.5  0.1  0.3

=Z

ijZ



Basic EM Approach

given: length parameter W, training set of sequences
set initial values for p
do

re-estimate Z from p             (E –step)
re-estimate p from Z             (M-step)

until change in p < ε
return: p, Z



Basic EM Approach
• we’ll need to calculate the probability of a training 

sequence given a hypothesized starting position:
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Example

G C T G T A G=iX

0     1    2    3
A  0.25   0.1  0.5  0.2
C  0.25   0.4  0.2  0.1
G  0.25   0.3  0.1  0.6
T  0.25   0.2  0.2  0.1
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The E-step: Estimating Z
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The E-step: Estimating Z
• assume that it is equally likely that the motif will 

start in any position
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Example: Estimating Z

0     1    2    3
A  0.25   0.1  0.5  0.2
C  0.25   0.4  0.2  0.1
G  0.25   0.3  0.1  0.6
T  0.25   0.2  0.2  0.1

=p

G C T G T A G=iX
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• then normalize so that



The M-step: Estimating p
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Example: Estimating p
A C A G C A

1.0,1.0,7.0,1.0 4,13,12,11,1 ==== ZZZZ

A G G C A G
4.0,1.0,1.0,4.0 4,23,22,21,2 ==== ZZZZ

T C A G T C
1.0,1.0,6.0,2.0 4,33,32,31,3 ==== ZZZZ

4  ... 
1

4,33,32,11,1

3,31,23,11,1
A,1 ++++

++++
=

ZZZZ
ZZZZ

p



The EM Algorithm

• EM converges to a local maximum in the 
likelihood of the data given the model:

∏
i

i pX )|Pr(

• usually converges in a small number of iterations
• sensitive to initial starting point (i.e. values in p)
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MEME Enhancements to the 
Basic EM Approach

• MEME builds on the basic EM approach in the 
following ways:
– trying many starting points
– not assuming that there is exactly one motif 

occurrence in every sequence 
– allowing multiple motifs to be learned
– incorporating Dirichlet prior distributions



Starting Points in MEME

• for every distinct subsequence of length W in the 
training set
– derive an initial p matrix from this subsequence
– run EM for 1 iteration

• choose motif model (i.e. p matrix) with highest 
likelihood

• run EM to convergence



Using Subsequences as Starting 
Points for EM

• set values corresponding to letters in the 
subsequence to X

• set other values to (1-X)/(M-1) where M is the 
length of the alphabet

• example: for the subsequence TAT with X=0.5
1    2    3

A  0.17  0.5   0.17
C  0.17  0.17  0.17
G  0.17  0.17  0.17
T  0.5   0.17  0.5

=p



The ZOOPS Model

• the approach as we’ve outlined it, assumes that each 
sequence has exactly one motif occurrence per sequence; 
this is the OOPS model

• the ZOOPS model assumes zero or one occurrences per 
sequence



E-step in the ZOOPS Model
• we need to consider another alternative: the ith sequence 

doesn’t contain the motif
• we add another parameter (and its relative)

prior prob that any position in a 
sequence is the start of a motif

prior prob of a sequence 
containing a motif

λ
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E-step in the ZOOPS Model
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M-step in the ZOOPS Model

• update p same as before
• update as follows
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The TCM Model
• the TCM (two-component mixture model) 

assumes zero or more motif occurrences per 
sequence



Likelihood in the TCM Model
• the TCM model treats each length W subsequence 

independently
• to determine the likelihood of such a subsequence: 
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E-step in the TCM Model
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Finding Multiple Motifs
• basic idea: discount the likelihood that a new 

motif starts in a given position if this motif would 
overlap with a previously learned one

• when re-estimating       , multiply by                    ijZ )1Pr( =ijV
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passes of motif finding                    
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Gibbs Sampling

• a general procedure for sampling from the joint 
distribution of a set of random variables                       
by iteratively sampling from                                    
for each j

• application to motif finding: Lawrence et al. 1993
• can view it as a stochastic analog of EM for this task
• less susceptible to local minima than EM

) ..., ...|Pr( 111 njjj UUUUU +−

) ...Pr( 1 nUU



Gibbs Sampling Approach

• in the EM approach we maintained a distribution               
over the possible motif starting points for each sequence

• in the Gibbs sampling approach, we’ll maintain a specific 
starting point for each sequence       but we’ll keep 
resampling these

iZ

ia



Gibbs Sampling Approach
given: length parameter W, training set of sequences

choose random positions for a
do

pick a sequence
estimate p given current motif positions a (update step)

(using all sequences but       )
sample a new motif position      for        (sampling step)

until convergence
return: p, a

iX

iX
iXia



Sampling New Motif Positions

• for each possible starting position,              , compute a 
weight

• randomly select a new starting position    according to 
these weights
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Gibbs Sampling (AlignACE)

• Given: 
– x1, …, xN, 
– motif length K,
– background B,

• Find:
– Model M
– Locations a1,…, aN in x1, …, xN

Maximizing log-odds likelihood ratio:
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Gibbs Sampling (AlignACE)
• AlignACE: first statistical motif finder
• BioProspector: improved version of AlignACE

Algorithm (sketch):
1. Initialization:

a. Select random locations in sequences x1, …, xN

b. Compute an initial model M from these locations

2. Sampling Iterations:
a. Remove one sequence xi

b. Recalculate model
c. Pick a new location of motif in xi according to 

probability the location is a motif occurrence



Gibbs Sampling (AlignACE)

Initialization:
• Select random locations a1,…, aN in x1, …, xN

• For these locations, compute M:
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• That is, Mkj is the number of occurrences of letter j in motif 
position k, over the total



Gibbs Sampling (AlignACE)

Predictive Update:

• Select a sequence x = xi

• Remove xi, recompute model:
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Gibbs Sampling (AlignACE)
Sampling:
For every K-long word xj,…,xj+k-1 in x:

Qj = Prob[ word | motif ] = M(1,xj)×…×M(k,xj+k-1)
Pi = Prob[ word | background ] B(xj)×…×B(xj+k-1)

Let 

Sample a random new position ai according to the 
probabilities A1,…, A|x|-k+1.
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Gibbs Sampling (AlignACE)

Running Gibbs Sampling:

1. Initialize

2. Run until convergence

3. Repeat 1,2 several times, report common motifs



Advantages / Disadvantages
• Very similar to EM

Advantages:
• Easier to implement
• Less dependent on initial parameters
• More versatile, easier to enhance with heuristics

Disadvantages:
• More dependent on all sequences to exhibit the motif
• Less systematic search of initial parameter space



Repeats, and a Better Background 
Model

• Repeat DNA can be confused as motif
– Especially low-complexity CACACA… AAAAA, etc.

Solution:

more elaborate background model
0th order: B = { pA, pC, pG, pT }
1st order: B = { P(A|A), P(A|C), …, P(T|T) }
…
Kth order: B = { P(X | b1…bK); X, bi∈{A,C,G,T} }

Has been applied to EM and Gibbs (up to 3rd order)



Example Application: Motifs in Yeast

Group:

Tavazoie et al. 1999, G. Church’s lab, Harvard

Data:

• Microarrays on 6,220 mRNAs from yeast 
Affymetrix chips (Cho et al.)

• 15 time points across two cell cycles



Processing of Data

1. Selection of 3,000 genes

• Genes with most variable expression were selected

• Clustering according to common expression

• K-means clustering
• 30 clusters, 50-190 genes/cluster
• Clusters correlate well with known function

1. AlignACE motif finding 
• 600-long upstream regions
• 50 regions/trial



Motifs in Periodic Clusters



Motifs in Non-periodic Clusters
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