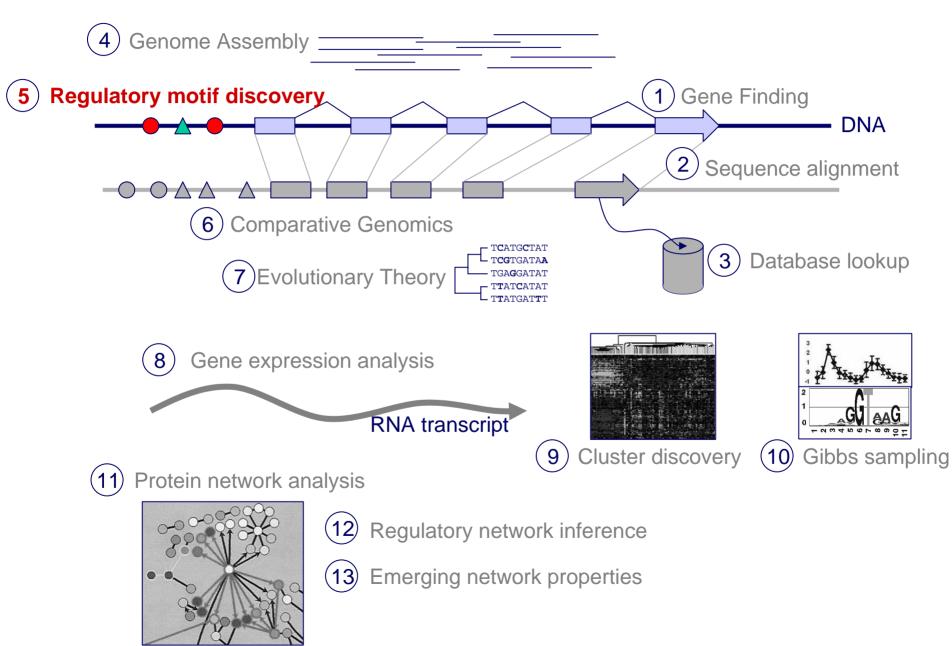
6.096 – Algorithms for Computational Biology

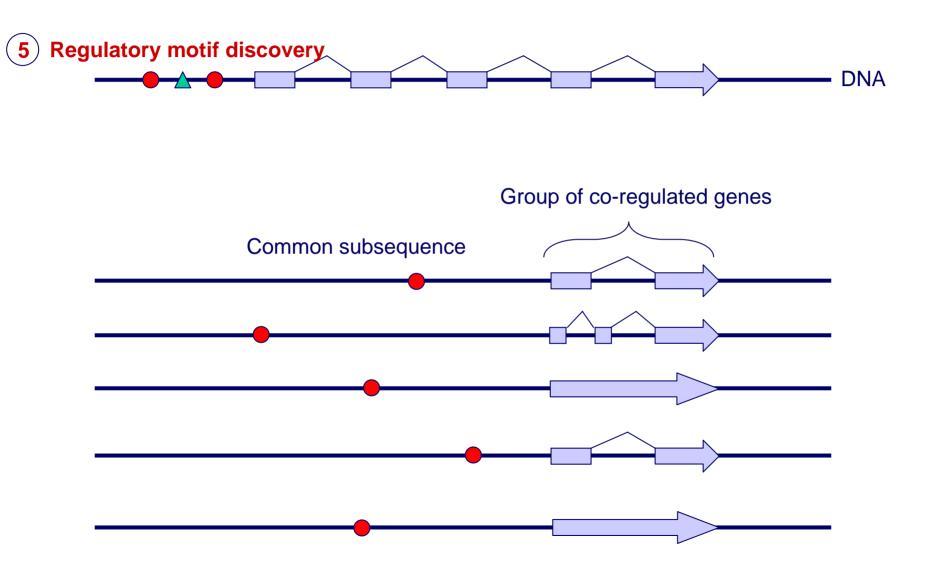
Expectation Maximization and Gibbs Sampling

- Lecture 1 Introduction
- Lecture 2 Hashing and BLAST
- Lecture 3 Combinatorial Motif Finding
- **Lecture 4 Statistical Motif Finding**

Challenges in Computational Biology



Challenges in Computational Biology



Overview

➢ Introduction

- ➢ Bio review: Where do ambiguities come from?
- Computational formulation of the problem

Combinatorial solutions

- Exhaustive search
- Greedy motif clustering
- Wordlets and motif refinement

Probabilistic solutions

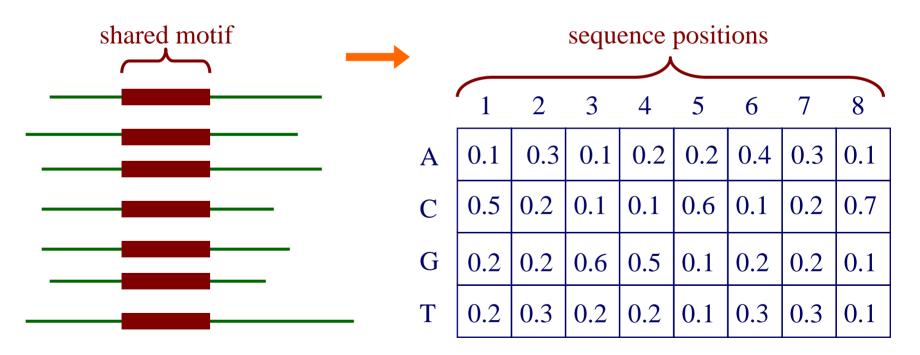
- Expectation maximization
- Gibbs sampling

Sequence Motifs

- what is a sequence *motif* ?
 - a sequence pattern of biological significance
- examples
 - protein binding sites in DNA
 - protein sequences corresponding to common functions or conserved pieces of structure

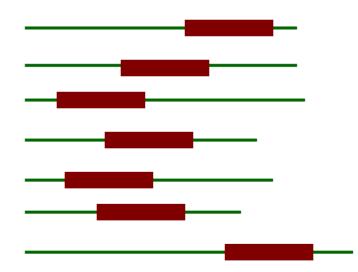
Motifs and Profile Matrices

• given a set of aligned sequences, it is straightforward to construct a profile matrix characterizing a motif of interest



Motifs and Profile Matrices

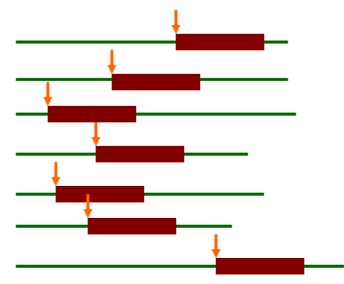
- how can we construct the profile if the sequences aren't aligned?
 - in the typical case we don't know what the motif looks like



• use an Expectation Maximization (EM) algorithm

The EM Approach

- EM is a family of algorithms for learning probabilistic models in problems that involve *hidden state*
- in our problem, the hidden state is where the motif starts in each training sequence



The MEME Algorithm

- Bailey & Elkan, 1993
- uses EM algorithm to find multiple motifs in a set of sequences
- first EM approach to motif discovery: Lawrence & Reilly 1990

Representing Motifs

- a motif is assumed to have a fixed width, W
- a motif is represented by a matrix of probabilities: p_{ck} represents the probability of character *c* in column *k*
- example: DNA motif with W=3

		1	2	3
	Α	0.1	0.5	0.2
p =	C	0.4	0.2	0.1
1			0.1	
	т	0.2	0.2	0.1

Representing Motifs

- we will also represent the "background" (i.e. outside the motif) probability of each character
- p_{c0} represents the probability of character c in the background
- example:

$$p_0 = \begin{smallmatrix} {\tt A} & 0.26 \\ {\tt C} & 0.24 \\ {\tt G} & 0.23 \\ {\tt T} & 0.27 \end{smallmatrix}$$

Basic EM Approach

- the element Z_{ij} of the matrix Z represents the probability that the motif starts in position j in sequence I
- example: given 4 DNA sequences of length 6, where *W*=3

		1	2	3	4
<i>Z</i> =	seq1	0.1	0.1	0.2	0.6
	seq2	0.4	0.2	0.1	0.3
	seq3	0.3	0.1	0.5	0.1
	seq4	0.1	0.5	0.1	0.3

Basic EM Approach

given: length parameter W, training set of sequences set initial values for p do re-estimate Z from p (E-step) re-estimate *p* from *Z* (M-step) until change in $p < \varepsilon$ return: p, Z

Basic EM Approach

• we'll need to calculate the probability of a training sequence given a hypothesized starting position:

$$\Pr(X_i \mid Z_{ij} = 1, p) = \prod_{k=1}^{j-1} p_{c_k, 0} \prod_{k=j}^{j+W-1} p_{c_k, k-j+1} \prod_{k=j+W}^{L} p_{c_k, 0}$$

before motif motif after motif

- X_i is the *i*th sequence
- Z_{ii} is 1 if motif starts at position *j* in sequence *i*
 - C_k is the character at position k in sequence i

Example

$$X_i = \mathbf{G} \ \mathbf{C} \ \mathbf{T} \ \mathbf{G} \ \mathbf{T} \ \mathbf{A} \ \mathbf{G}$$

		0	1	2	3
	Α	0.25	0.1	0.5	0.2
p =	C	0.25	0.4	0.2	0.1
1	G	0.25	0.3	0.1	0.6
	т	0.25	0.2	0.2	0.1

 $Pr(X_i | Z_{i3} = 1, p) =$ $p_{G,0} \times p_{C,0} \times p_{T,1} \times p_{G,2} \times p_{T,3} \times p_{A,0} \times p_{G,0} =$ $0.25 \times 0.25 \times 0.2 \times 0.1 \times 0.1 \times 0.25 \times 0.25$

The E-step: Estimating Z

• to estimate the starting positions in Z at step t

$$Z_{ij}^{(t)} = \frac{\Pr(X_i | Z_{ij} = 1, p^{(t)}) \Pr(Z_{ij} = 1)}{\sum_{k=1}^{L-W+1} \Pr(X_i | Z_{ik} = 1, p^{(t)}) \Pr(Z_{ik} = 1)}$$

• this comes from Bayes' rule applied to

$$\Pr(Z_{ij} = 1 | X_i, p^{(t)})$$

The E-step: Estimating Z

• assume that it is equally likely that the motif will start in any position

$$Z_{ij}^{(t)} = \frac{\Pr(X_i \mid Z_{ij} = 1, p^{(t)}) \Pr(Z_{ij} = 1)}{\sum_{k=1}^{L-W+1} \Pr(X_i \mid Z_{ik} = 1, p^{(t)}) \Pr(Z_{ik} = 1)}$$

Example: Estimating Z $X_i = G C T G T A G$ A 0.25 0.1 0.5 0.2 $p = {C \ 0.25 \ 0.3 \ 0.1 \ 0.6}$ T 0.25 0.2 0.1

 $Z_{i1} = 0.3 \times 0.2 \times 0.1 \times 0.25 \times 0.25 \times 0.25 \times 0.25$

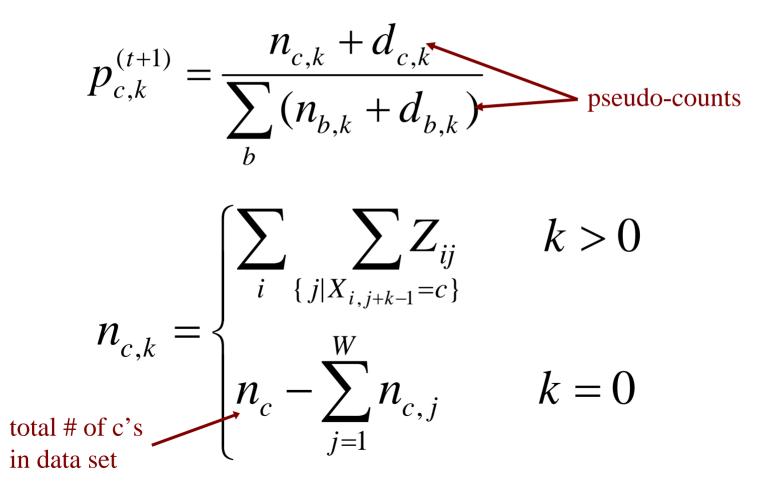
 $Z_{i2} = 0.25 \times 0.4 \times 0.2 \times 0.6 \times 0.25 \times 0.25 \times 0.25$

• then normalize so that

$$\sum_{j=1}^{L-W+1} Z_{ij} = 1$$

The M-step: Estimating p

• recall $p_{c,k}$ represents the probability of character c in position k; values for position 0 represent the background



Example: Estimating p

A C A G C A $Z_{1,1} = 0.1, Z_{1,2} = 0.7, Z_{1,3} = 0.1, Z_{1,4} = 0.1$

A G G C A G $Z_{2,1} = 0.4, Z_{2,2} = 0.1, Z_{2,3} = 0.1, Z_{2,4} = 0.4$

T C A G T C $Z_{3,1} = 0.2, Z_{3,2} = 0.6, Z_{3,3} = 0.1, Z_{3,4} = 0.1$

$$p_{\mathrm{A},1} = \frac{Z_{1,1} + Z_{1,3} + Z_{2,1} + Z_{3,3} + 1}{Z_{1,1} + Z_{1,2} \dots + Z_{3,3} + Z_{3,4} + 4}$$

The EM Algorithm

• EM converges to a local maximum in the likelihood of the data given the model:

$$\prod_{i} \Pr(X_i \mid p)$$

- usually converges in a small number of iterations
- sensitive to initial starting point (i.e. values in *p*)

Overview

Introduction

- ➢ Bio review: Where do ambiguities come from?
- Computational formulation of the problem

Combinatorial solutions

- Exhaustive search
- Greedy motif clustering
- Wordlets and motif refinement

Probabilistic solutions

- Expectation maximization
- MEME extensions
- Gibbs sampling

MEME Enhancements to the Basic EM Approach

- MEME builds on the basic EM approach in the following ways:
 - trying many starting points
 - not assuming that there is exactly one motif occurrence in every sequence
 - allowing multiple motifs to be learned
 - incorporating Dirichlet prior distributions

Starting Points in MEME

- for every distinct subsequence of length *W* in the training set
 - derive an initial p matrix from this subsequence
 - run EM for 1 iteration
- choose motif model (i.e. *p* matrix) with highest likelihood
- run EM to convergence

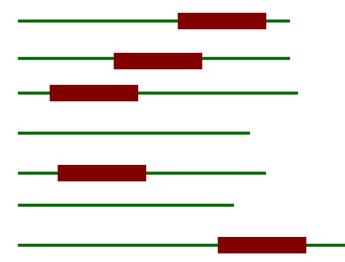
Using Subsequences as Starting Points for EM

- set values corresponding to letters in the subsequence to *X*
- set other values to (1-X)/(M-1) where M is the length of the alphabet
- example: for the subsequence TAT with X=0.5

$$p = \begin{bmatrix} 1 & 2 & 3 \\ A & 0.17 & 0.5 & 0.17 \\ C & 0.17 & 0.17 & 0.17 \\ G & 0.17 & 0.17 & 0.17 \\ T & 0.5 & 0.17 & 0.5 \end{bmatrix}$$

The ZOOPS Model

- the approach as we've outlined it, assumes that each sequence has exactly <u>one motif occurrence per sequence</u>; this is the OOPS model
- the ZOOPS model assumes <u>zero or one o</u>ccurrences <u>per</u> <u>s</u>equence



E-step in the ZOOPS Model

- we need to consider another alternative: the *i*th sequence doesn't contain the motif
- we add another parameter (and its relative)
 - λ prior prob that any position in a sequence is the start of a motif

$$\gamma = (L - W + 1)\lambda$$
 Prior prob of a sequence containing a motif

E-step in the ZOOPS Model

$$Z_{ij}^{(t)} = \frac{\Pr(X_i \mid Z_{ij} = 1, p^{(t)})\lambda^{(t)}}{\Pr(X_i \mid Q_i = 0, p^{(t)})(1 - \gamma^{(t)})} + \sum_{k=1}^{L-W+1} \Pr(X_i \mid Z_{ik} = 1, p^{(t)})\lambda^{(t)}}$$

• here Q_i is a random variable that takes on 0 to indicate that the sequence doesn't contain a motif occurrence

$$Q_i = \sum_{j=1}^{L-W+1} Z_{i,j}$$

M-step in the ZOOPS Model

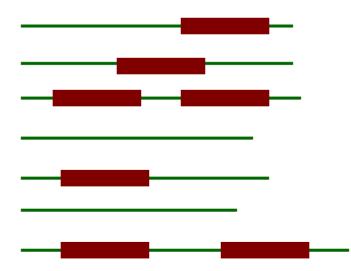
- update *p* same as before
- update λ, γ as follows

$$\lambda^{(t+1)} = \frac{\gamma^{(t+1)}}{(L-W+1)} = \frac{1}{n(L-W+1)} \sum_{i=1}^{n} \sum_{j=1}^{m} Z_{i,j}^{(t)}$$

• average of $Z_{i,j}^{(t)}$ across all sequences, positions

The TCM Model

• the TCM (two-component mixture model) assumes *zero or more* motif occurrences per sequence



Likelihood in the TCM Model

- the TCM model treats each length *W* subsequence independently
- to determine the likelihood of such a subsequence:

$$\Pr(X_{ij} \mid Z_{ij} = 1, p) = \prod_{k=j}^{j+W-1} p_{c_k, k-j+1}$$
 assuming a motif starts there

$$\Pr(X_{ij} \mid Z_{ij} = 0, p) = \prod_{k=j}^{j+W-1} p_{c_k,0}$$

assuming a motif doesn't start there

E-step in the TCM Model

$$Z_{ij}^{(t)} = \frac{\Pr(X_{i,j} \mid Z_{ij} = 1, p^{(t)})\lambda^{(t)}}{\Pr(X_{i,j} \mid Z_{ij} = 0, p^{(t)})(1 - \lambda^{(t)}) + \Pr(X_{i,j} \mid Z_{ij} = 1, p^{(t)})\lambda^{(t)}}$$

subsequence isn't a motif subsequence is a motif

• M-step same as before

Finding Multiple Motifs

- basic idea: discount the likelihood that a new motif starts in a given position if this motif would overlap with a previously learned one
- when re-estimating Z_{ij} , multiply by $Pr(V_{ij} = 1)$

$$V_{ij} = \begin{cases} 1, \text{ no previous motifs in } [X_{i,j}, \dots, X_{i,j+w-1}] \\ 0, \text{ otherwise} \end{cases}$$

• V_{ij} is estimated using Z_{ij} values from previous passes of motif finding

Overview

Introduction

- ➢ Bio review: Where do ambiguities come from?
- Computational formulation of the problem

Combinatorial solutions

- Exhaustive search
- Greedy motif clustering
- Wordlets and motif refinement

Probabilistic solutions

- Expectation maximization
- MEME extensions
- Gibbs sampling

Gibbs Sampling

- a general procedure for sampling from the joint distribution of a set of random variables $Pr(U_1...U_n)$ by iteratively sampling from $Pr(U_j | U_1...U_{j-1}, U_{j+1}...U_n)$ for each *j*
- application to motif finding: Lawrence et al. 1993
- can view it as a stochastic analog of EM for this task
- less susceptible to local minima than EM

Gibbs Sampling Approach

- in the EM approach we maintained a distribution Z_i over the possible motif starting points for each sequence
- in the Gibbs sampling approach, we'll maintain a specific starting point for each sequence a_i but we'll keep resampling these

Gibbs Sampling Approach

given: length parameter W, training set of sequences choose random positions for a do pick a sequence X_i estimate p given current motif positions a (update step) (using all sequences but X_i) sample a new motif position a_i for X_i (sampling step) until convergence return: p, a

Sampling New Motif Positions

• for each possible starting position, $a_i = j$, compute a weight i+W-1

$$A_{j} = \frac{\prod_{k=j}^{j+W-1} p_{c_{k},k-j+1}}{\prod_{k=j}^{j+W-1} p_{c_{k},0}}$$

• randomly select a new starting position a_i according to these weights

- Given:
 - $x^1, ..., x^N$,
 - motif length K,
 - background B,

$$\sum_{i=1}^{N} \sum_{k=1}^{K} \log \frac{M(k, x_{a_i+k}^i)}{B(x_{a_i+k}^i)}$$

- Find:
 - Model M
 - Locations a_1, \ldots, a_N in x^1, \ldots, x^N

Maximizing log-odds likelihood ratio:

- AlignACE: first statistical motif finder
- BioProspector: improved version of AlignACE

<u>Algorithm (sketch)</u>:

- 1. <u>Initialization</u>:
 - a. Select random locations in sequences $x^1, ..., x^N$
 - b. Compute an initial model M from these locations

2. <u>Sampling Iterations</u>:

- a. Remove one sequence x^i
- b. Recalculate model
- c. Pick a new location of motif in xⁱ according to probability the location is a motif occurrence

Initialization:

- Select random locations $a_1, ..., a_N$ in $x^1, ..., x^N$
- For these locations, compute M:

$$M_{kj} = \frac{1}{N} \sum_{i=1}^{N} (x_{a_i+k} = j)$$

• That is, M_{kj} is the number of occurrences of letter j in motif position k, over the total

Predictive Update:

- Select a sequence $x = x^i$
- Remove xⁱ, recompute model:

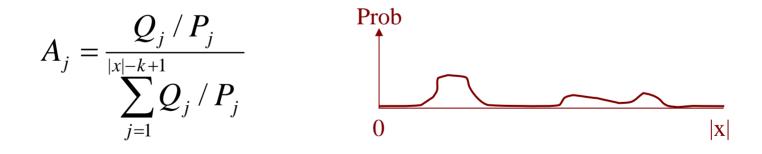
$$M_{kj} = \frac{1}{(N-1)+B} \left(\beta_j + \sum_{s=1,s\neq i}^{N} (x_{a_s+k} = j)\right)$$

where β_{j} are pseudocounts to avoid 0s, and B = $\Sigma_{j}\,\beta_{j}$

<u>Sampling</u>: For every K-long word x_{i}, \dots, x_{i+k-1} in x:

 $Q_{j} = Prob[word | motif] = M(1,x_{j}) \times ... \times M(k,x_{j+k-1})$ $P_{i} = Prob[word | background] B(x_{i}) \times ... \times B(x_{i+k-1})$

Let



Sample a random new position a_i according to the probabilities $A_1, \ldots, A_{|x|-k+1}$.

Running Gibbs Sampling:

- 1. Initialize
- 2. Run until convergence
- 3. Repeat 1,2 several times, report common motifs

Advantages / Disadvantages

• Very similar to EM

Advantages:

- Easier to implement
- Less dependent on initial parameters
- More versatile, easier to enhance with heuristics

Disadvantages:

- More dependent on all sequences to exhibit the motif
- Less systematic search of initial parameter space

Repeats, and a Better Background Model

• Repeat DNA can be confused as motif

- Especially low-complexity CACACA... AAAAA, etc.

Solution:

more elaborate background model $\begin{array}{l} 0^{th} \text{ order: } B = \{ p_A, p_C, p_G, p_T \} \\
1^{st} \text{ order: } B = \{ P(A|A), P(A|C), \dots, P(T|T) \} \\
\dots \\
K^{th} \text{ order: } B = \{ P(X \mid b_1 \dots b_K); X, b_i \in \{A, C, G, T\} \end{array} \right\}$

Has been applied to EM and Gibbs (up to 3rd order)

Example Application: Motifs in Yeast

Group:

Tavazoie et al. 1999, G. Church's lab, Harvard

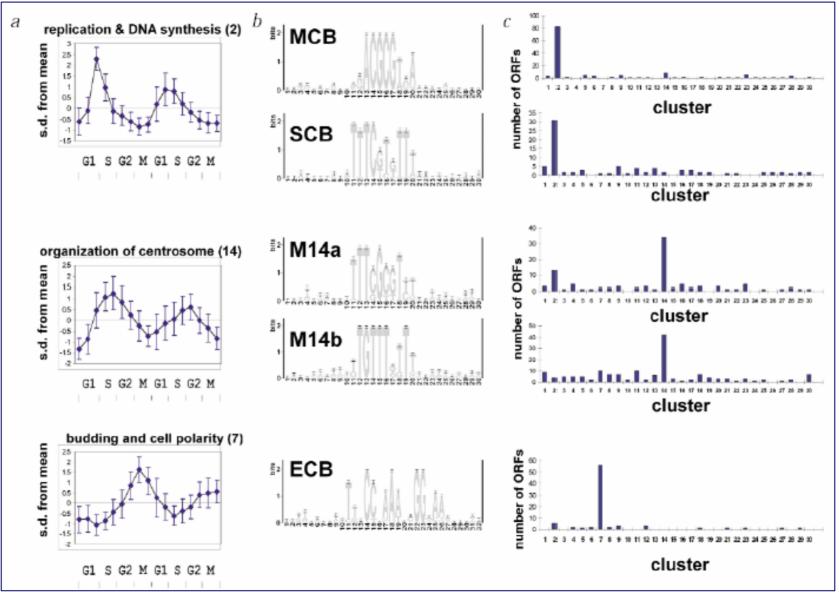
Data:

- Microarrays on 6,220 mRNAs from yeast Affymetrix chips (Cho et al.)
- 15 time points across two cell cycles

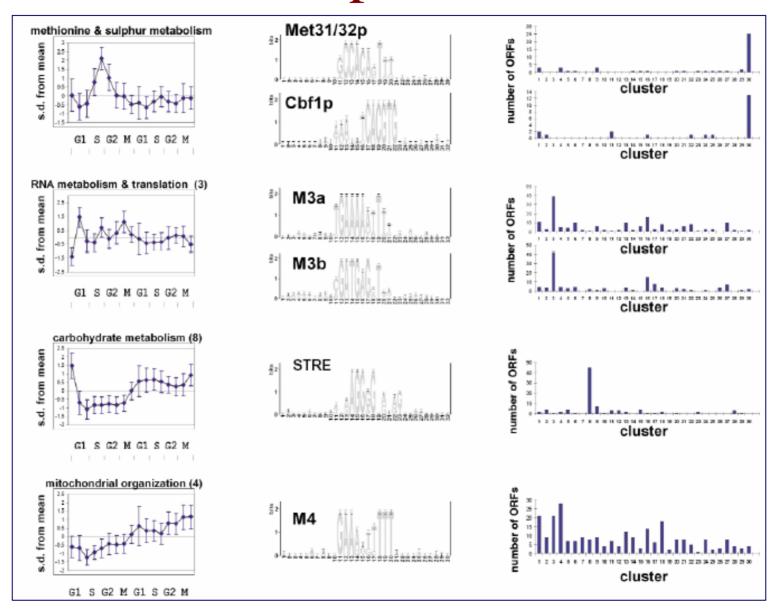
Processing of Data

- 1. Selection of 3,000 genes
 - Genes with most variable expression were selected
- Clustering according to common expression
 - K-means clustering
 - 30 clusters, 50-190 genes/cluster
 - Clusters correlate well with known function
- 1. AlignACE motif finding
 - 600-long upstream regions
 - 50 regions/trial

Motifs in Periodic Clusters



Motifs in Non-periodic Clusters



Overview

Introduction

- ➢ Bio review: Where do ambiguities come from?
- Computational formulation of the problem

Combinatorial solutions

- Exhaustive search
- Greedy motif clustering
- Wordlets and motif refinement

Probabilistic solutions

- Expectation maximization
- MEME extensions
- Gibbs sampling