DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

TRANSISTOR BIAS STABILTY AS A FUNCTION OF β_{F} VARIATIONS by Ron Roscoe

Figure 1: Single resistor transistor biasing circuit.

$$
\beta_{F}=100 ; \quad I_{C}=\beta_{F} I_{B} ; \quad I_{E}=\left(\beta_{F}+1\right) I_{B} ; \quad I_{E} \approx I_{C}
$$

$$
\begin{align*}
& I_{B} R_{B}+0.7 V+I_{C} R_{E}=V_{C C} \\
& I_{B} R_{B}+0.7 V+\beta_{F} I_{B} R_{E}=V_{C C} \\
& I_{B}\left(R_{B}+\beta_{F} R_{E}\right)=V_{C C}-0.7 V \\
& I_{B}=\frac{\left(V_{C C}-0.7 V\right)}{R_{B}+\beta_{F} R_{E}} \tag{1}\\
& I_{C}=\frac{\beta_{F}\left(V_{C C}-0.7 V\right)}{R_{B}+\beta_{F} R_{E}} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& R_{B}+\beta_{F} R_{E}=\frac{\beta_{F}\left(V_{C C}-0.7 \mathrm{~V}\right)}{I_{C}} \\
& R_{B}+100 \times 2200 \Omega=\frac{100(15 \mathrm{~V}-0.7 \mathrm{~V})}{4 \mathrm{~mA}} \\
& R_{B}+220 \mathrm{k} \Omega=\frac{1430}{4} \times 10^{3} \Omega \\
& R_{B}+220 \mathrm{k} \Omega=358 \mathrm{k} \Omega \\
& R_{B}=138 \mathrm{k} \Omega
\end{aligned}
$$

Variation of Collector Current with Beta

I_{C}	β_{F}
2.9 mA	50
4.0 mA	100
5.0 mA	200
5.4 mA	300
$\Delta \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}$	

Figure 2: Two-resistor biasing circuit and Thevenin Equivalent for analysis.

$$
\begin{gather*}
V_{B}=\frac{R_{1}}{R_{1}+R_{2}} \times V_{c c} \\
V_{B}-I_{B} R_{B}-0.7 V-I_{C} R_{E}=0 \\
V_{B}=I_{B} R_{B}+0.7 V+\beta_{F} I_{B} R_{E}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \\
V_{B}-0.7 V=I_{B} R_{B}+\beta_{F} I_{B} R_{E}=I_{B}\left(R_{B}+\beta_{F} R_{E}\right) \\
I_{B}=\frac{\left(V_{B}-0.7 V\right)}{R_{B}+\beta_{F} R_{E}} \tag{5}\\
I_{C}=\frac{\beta_{F}\left(V_{B}-0.7 V\right)}{R_{B}+\beta_{F} R_{E}} \tag{6}
\end{gather*}
$$

Equation (6) is an equation with two unknowns: V_{B} and R_{B}. Analyzing the denominator of equation (6) we note that if R_{B} is kept small compared to the product $\beta_{F} R_{E}$ then the β_{F} 'S in the numerator and denominator will cancel if we can
ignore R_{B}. As a general rule of thumb, keeping R_{B} no greater than ten times R_{E} will give good bias stability over a wide range of β_{F} values. R_{B} cannot be lowered to zero since the internal impedance of the battery is zero, and thus any AC source that is capacitor-coupled into the transistor stage will be shorted out. We will continue the example using $\mathrm{R}_{\mathrm{B}}=22 \mathrm{k} \Omega$. Now we can solve eqn. (6) for V_{B}.

$$
\begin{aligned}
& 4 m A \times(22 k \Omega+220 k \Omega)=100\left(V_{B}-0.7 V\right) \\
& 4 m A \times 242 k \Omega=100 V_{B}-70 \\
& 968+70=100 V_{B} \\
& V_{B}=10.4 V
\end{aligned}
$$

Given $V_{B}=10.4 \mathrm{~V}$ and $R_{B}=22 \mathrm{k} \Omega$, we can now solve equations (3) and (4) for R_{1}

$$
\begin{aligned}
& \quad V_{B}=\frac{R_{1}}{R_{1}+R_{2}} \times V_{C C} \\
& \text { and } R_{2} \cdot R_{1}+R_{2}=R_{1}\left(\frac{V_{C C}}{V_{B}}\right)=R_{1}\left(\frac{15 \mathrm{~V}}{10.4 V}\right)=1.45 R_{1} \\
& \quad R_{1}+R_{2}=1.45 R_{1} \\
& 0.45 R_{1}=R_{2} \\
& \frac{R_{1} R_{2}}{R_{1}+R_{2}}=R_{B}=22 \mathrm{k} \Omega \\
& \frac{R_{1} \times 0.45 R_{1}}{R_{1}+0.45 R_{1}}=22 \mathrm{k} \Omega \\
& \frac{0.45 R_{1}^{2}}{1.45 R_{1}}=22 \mathrm{k} \Omega \\
& 0.310 R_{1}=22 \mathrm{k} \Omega \\
& R_{1}=70.9 \mathrm{k} \Omega \quad \text { use } \quad 68 \mathrm{k} \Omega \\
& R_{2}=0.45 R_{1}=0.45 \times 70.9 \mathrm{k} \Omega=31.9 \mathrm{k} \Omega \quad \text { use } \quad 33 \mathrm{k} \Omega
\end{aligned}
$$

Check I_{C} variation with change in β_{F} using equation (6):

$$
\begin{align*}
& I_{C}=\frac{\beta_{F}\left(V_{B}-0.7 \mathrm{~V}\right)}{R_{B}+\beta_{F} R_{E}} \tag{6}\\
& \quad I_{C}=\frac{\beta_{F}(10.4-0.7 \mathrm{~V})}{22 k \Omega+\beta_{F} 2200 \Omega}
\end{align*}
$$

I_{C}	β_{F}
3.7 mA	50
4.0 mA	100
4.2 mA	200
4.3 mA	300
$\Delta \mathrm{I}_{\mathrm{C}}=0.6 \mathrm{~mA}$	

Looking at the partial circuit shown in Figure 2c; we can see that our goal is to keep the product of the collector (emitter) current and the emitter resistor constant. This voltage is 8.8 volts for $\mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}$. Note that the 0.7 V base-emitter voltage is essentially constant. If we can keep the voltage drop due to $I_{B} R_{B}$ as small as possible by keeping R_{B} small (since we have no control over I_{B}); then it becomes obvious that the emitter resistor voltage drop is essentially set by the V_{B} battery voltage minus the base-emitter voltage.

