Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.111 - Introductory Digital Systems Laboratory

Problem Set 1

Issued: September 4, 2002

Problem 1: Boolean Algebra Practice Problems (Problem 1 will not be graded.) Simplify each expression by algebraic manipulation. Try to recognize when it is appropriate to transform to the dual, simplify, and re-transform (e.g. no. 6). Try doing the problems before looking at the solutions which are at the end of this problem set.

1)	a + 0 =	14)	$y + y\overline{y} =$
2)	$\overline{a}.0 =$	15)	$xy + x\overline{y} =$
3)	$a + \overline{a} =$	16)	$\overline{x} + y\overline{x} =$
4)	a + a =	17)	$(w + \overline{x} + y + \overline{z})y =$
5)	a + ab =	18)	$(x+\overline{y})(x+y) =$
6)	$a + \overline{a}b =$	19)	w + [w + (wx)] =
7)	$a(\overline{a}+b) =$	20)	x[x + (xy)] =
8)	$ab + \overline{a}b =$	21)	$\overline{(\overline{x} + \overline{x})} =$
9)	$(\overline{a} + \overline{b})(\overline{a} + b) =$	22)	$\overline{(x+\overline{x})} =$
10)	$a(a+b+c+\ldots) =$	23)	$w + (w\overline{x}yz) =$
	For (11),(12), (13), $f(a, b, c) = a + b + c$	24)	$\overline{w}(wxyz) =$
11)	f(a, b, ab) =	25)	$xz + \overline{x}y + zy =$
12)	$f(a, b, \overline{a}\overline{b}) =$	26)	$(x+z)(\overline{x}+y)(z+y)$
13)	$f[a, b, \overline{(ab)}] =$	27)	$\overline{x} + \overline{y} + xy\overline{z} =$

Problem 2:

For each of the following Boolean expressions, give:

- i) The truth table,
- ii) The Karnaugh map,
- iii) The MSP expression, (Show groupings)
- iv) The MPS expression. (Show groupings)

1.
$$(a + (\overline{b} + \overline{c})) \cdot (\overline{c} + (a + b + d) \cdot (\overline{a} + \overline{b} + \overline{d}))$$

2. $(\overline{c} + a \cdot b) \cdot (\overline{c} + (a + \overline{d}) \cdot (b + \overline{d})) \cdot (c + (a + \overline{b}) \cdot (b + \overline{d}))$
3. $\overline{w} \cdot y + w \cdot \overline{x} \cdot y + \overline{w} \cdot x \cdot \overline{z}$

Due: September 11, 2002

=

Problem 3:

Karnaugh Maps are useful for finding minimal implementations of Boolean expressions with only a few variables. However, they can be a little tricky when "don't cares" (X) are involved. Using the following K-Maps:

- 1. Find the minimal sum of products expression. Show your groupings.
- 2. Find the minimal product of sums expression. Show your groupings.
- 3. Are your solutions unique? If not, list and show the other minimal expressions.
- 4. Does the MPS = MSP?

∖ab					\ab				
cd	00	01	11	10	cd	00	01	11	10
00	0	0	0	1	00	0	0	Х	1
01	0	0	0	Х	01	0	0	0	0
11	0	0	0	1	11	0	0	0	1
10	0	0	0	1	10	0	0	Х	1

Problem 4:

Use DeMorgan's Theorems to simplify the following expressions:

- 1. $\overline{(\overline{a}+c)} \cdot \overline{(b+c)}$
- 2. $\overline{a \cdot b \cdot \overline{c}}$
- 3. $\overline{b+\overline{c}} \cdot \overline{\overline{a}+c} \cdot \overline{\overline{a}+\overline{b}}$

Problem 5:

Do the mouse-clicking, etc., as specified by the handout, A Beginner's Guide to WARP.

Create a VHDL file, p5.vhd, to implement

$$p1 = a * c + \overline{a} * (b + \overline{c})$$

and

 $\mathbf{p}2 = \overline{b} \ast \overline{c} \ast d + \overline{a} \ast b \ast d + a \ast \overline{c} \ast d + \overline{a} \ast \overline{c} \ast \overline{d}$

Use the sample file, /mit/6.111/vhdl/warp/beginner/halfadd.vhd, as a guide. Process this VHDL file, choosing a 20V8 as the device.

Verify that the "correct" answer is generated by inspecting the report file and by simulation.

Solutions to Boolean Algebra Practice Problems

1) a + 0 = a2) $\bar{a}.0 = 0$ 3) $a + \overline{a} = 1$ 4) a + a = a5) a + ab = a(1 + b) = a6) $a + \overline{a}b = (a + \overline{a})(a + b) = a + b$ 7) $a(\overline{a} + b) = a\overline{a} + ab = ab$ 8) $ab + \overline{a}b = b(a + \overline{a}) = b$ 9) $(\overline{a} + \overline{b})(\overline{a} + b) = \overline{aa} + \overline{ab} + \overline{ba} + \overline{bb} = \overline{a} + \overline{ab} + \overline{ab} = \overline{a}(1 + b + \overline{b}) = \overline{a}$ 10) a(a + b + c...) = aa + ab + ac + ... = a + ab + ac + ... = a11) f(a, b, ab) = a + b + ab = a + b12) $f(a, b, \overline{ab}) = a + b + \overline{ab} = a + b + \overline{a} = 1$ 13) $f(a, b, \overline{(ab)}) = a + b + \overline{(ab)} = a + b + \overline{a} + \overline{b} = 1$ 14) $y + y\overline{y} = y$ 15) $xy + x\overline{y} = x(y + \overline{y}) = x$ 16) $\overline{x} + y\overline{x} = \overline{x}(1+y) = \overline{x}$ 17) $(w + \overline{x} + y + \overline{z})y = y$ 18) $(x + \overline{y})(x + y) = x$ 19) w + (w + (wx)) = w20) x(x + (xy)) = x21) $(\overline{x} + \overline{x}) = x$ 22) $\overline{(x+\overline{x})} = 0$ 23) $w + (w\overline{x}yz) = w(1 + \overline{x}yz) = w$ 24) $\overline{w}(wxyz) = \overline{w}(\overline{w} + \overline{x} + \overline{y} + \overline{z}) = \overline{w}$ 25) $xz + \overline{x}y + zy = xz + \overline{x}y$ 26) $(x+z)(\overline{x}+y)(z+y) = (x+z)(\overline{x}+y)$ 27) $\overline{x} + \overline{y} + xy\overline{z} = \overline{x} + \overline{y} + \overline{z}$