Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
6.111 - Introductory Digital Systems Laboratory

Problem Set 1 Solutions

Issued: Lecture 4 Day

Problem 1:

Not Graded.

1) $a+0=a$
2) $\bar{a}_{0} 0=0$
3) $a+\bar{a}=1$
4) $a+a=a$
5) $a+a b=a(1+b)=a$
6) $a+\bar{a} b=(a+\bar{a})(a+b)=a+b$
7) $a(\bar{a}+b)=a \bar{a}+a b=a b$
8) $a b+\bar{a} b=b(a+\bar{a})=b$
9) $(\bar{a}+\bar{b})(\bar{a}+b)=\bar{a} \bar{a}+\bar{a} b+\bar{b} \bar{a}+\bar{b} b=\bar{a}+\bar{a} b+\bar{a} \bar{b}=\bar{a}(1+b+\bar{b})=\bar{a}$
10) $a\left(a+b+c_{\ldots}\right)=a a+a b+a c+\ldots=a+a b+a c+\ldots=a$
11) $f(a, b, a b)=a+b+a b=a+b$
12) $f(a, b, \bar{a} \bar{b})=a+b+\bar{a} \bar{b}=a+b+\bar{a}=1$
13) $f(a, b, \overline{(a b)})=a+b+\overline{(a b)}=a+b+\bar{a}+\bar{b}=1$
14) $y+y \bar{y}=y$
15) $x y+x \bar{y}=x(y+\bar{y})=x$
16) $\bar{x}+y \bar{x}=\bar{x}(1+y)=\bar{x}$
17) $(w+\bar{x}+y+\bar{z}) y=y$
18) $(x+\bar{y})(x+y)=x$
19) $w+(w+(w x))=w$
20) $x(x+(x y))=x$
21) $(\bar{x}+\bar{x})=x$
22) $\overline{(x+\bar{x})}=0$
23) $w+(w \bar{x} y z)=w(1+\bar{x} y z)=w$
24) $\overline{w(w x y z)}=\bar{w}(\bar{w}+\bar{x}+\bar{y}+\bar{z})=\bar{w}$
25) $x z+\bar{x} y+z y=x z+\bar{x} y$
26) $(x+z)(\bar{x}+y)(z+y)=(x+z)(\bar{x}+y)$
27) $\bar{x}+\bar{y}+x y \bar{z}=\bar{x}+\bar{y}+\bar{z}$

Problem 2:

1.

$$
f=(a+(\bar{b}+\bar{c})) \cdot(\bar{c}+(a+b+d) \cdot(\bar{a}+\bar{b}+\bar{d}))
$$

i) truth table

a	b	c	d	f
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

iii) MPS

$$
f=\bar{c}+\bar{b} \cdot d+a \cdot \bar{d}
$$

ii) Karnaugh map

	0			
00	1	1	1	1
01	1	1	1	1
11	1	0	0	1
10	0	0	1	1

iv) MSP

$$
f=(\bar{b}+\bar{c}+\bar{d}) \cdot(a+\bar{c}+d)
$$

2.

$$
f=(\bar{c}+a \cdot b) \cdot(\bar{c}+(a+\bar{d}) \cdot(b+\bar{d})) \cdot(c+(a+\bar{b}) \cdot(b+\bar{d}))
$$

i) truth table

a	b	c	d	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

iii) MSP

ii) Karnaugh map

cd ${ }^{\text {ab }} 0001010$				
00	1	0	1	1
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

iv) MPS

3.

$$
f=\bar{w} \cdot y+w \cdot \bar{x} \cdot y+\bar{w} \cdot x \cdot \bar{z}
$$

i) truth table

w	x	y	z	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

iii) MSP

$f=\bar{w} \cdot x \cdot \bar{z}+\bar{x} \cdot y+\bar{w} \cdot y$
ii) Karnaugh map

$y z \begin{array}{lllll}\mathrm{wx} & 00 & 01 & 11 & 10\end{array}$				
00	0	1	0	0
01	0	0	0	0
11	1	1	0	1
10	1	1	0	1

iv) MPS

$$
f=(\bar{w}+\bar{x}) \cdot(y+\bar{z}) \cdot(x+y)
$$

Problem 3:

1. MSP
a)

$c d \stackrel{a b}{a b} 0001 \quad 11-10$				
	0	0	0	
01	0	0	0	X
11	0	0	0	1
10	0	0	0	

b)

2. MPS
a)

b)

3. The solutions are unique given that we want the minimal equations.
4. The MSP and MPS in part a are equal. The MSP and MPS in part b are not equal as the don't cares in part 1 are assumed to be 1 and the don't cares in part 2 are assumed to be 0 .

Problem 4:

1.

$$
\overline{\overline{(\bar{a}+c)} \cdot \overline{(b+c)}}=(\bar{a}+c)+(b+c)=\bar{a}+b+c
$$

2.

$$
\overline{a \cdot b \cdot \bar{c}}=\bar{a}+\bar{b}+c
$$

3.

$$
\overline{(b+\bar{c})} \cdot \overline{(\bar{a}+c)} \cdot \overline{(\bar{a}+\bar{b})}=(\bar{b} \cdot c) \cdot(a \cdot \bar{c}) \cdot(a \cdot b)=0
$$

Problem 5:

library ieee;
use ieee.std_logic_1164.all;
entity pset_1_problem_5 is
port
a, b, c, d: in std_logic;
p1, p2 : out std_logic);
end pset_1_problem_5;
architecture structure of pset_1_problem_5 is begin

```
pl<= (a and c) or (not a and (b or not c));
p2<= (not b and not c and d)
        or (not a and b and d)
        or (a and not c and d)
        or (not a and not c and not d);
```

end structure;

