Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.111 - Introductory Digital Systems Laboratory

Problem Set 1 Solutions

Issued: Lecture 4 Day

Problem 1:

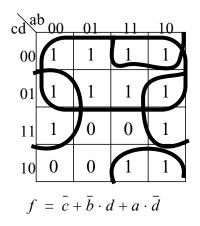
Not Graded.

1) a + 0 = a2) $\bar{a}_{.0} = 0$ 3) $a + \overline{a} = 1$ 4) a + a = a5) a + ab = a(1 + b) = a6) $a + \overline{a}b = (a + \overline{a})(a + b) = a + b$ 7) $a(\overline{a}+b) = a\overline{a}+ab = ab$ 8) $ab + \overline{a}b = b(a + \overline{a}) = b$ 9) $(\overline{a} + \overline{b})(\overline{a} + b) = \overline{aa} + \overline{ab} + \overline{b}\overline{a} + \overline{b}b = \overline{a} + \overline{ab} + \overline{a}\overline{b} = \overline{a}(1 + b + \overline{b}) = \overline{a}$ 10) a(a+b+c...) = aa+ab+ac+... = a+ab+ac+... = a11) f(a, b, ab) = a + b + ab = a + b12) $f(a, b, \overline{ab}) = a + b + \overline{ab} = a + b + \overline{a} = 1$ 13) $f(a, b, \overline{(ab)}) = a + b + \overline{(ab)} = a + b + \overline{a} + \overline{b} = 1$ 14) $y + y\overline{y} = y$ 15) $xy + x\overline{y} = x(y + \overline{y}) = x$ 16) $\overline{x} + y\overline{x} = \overline{x}(1+y) = \overline{x}$ 17) $(w + \overline{x} + y + \overline{z})y = y$ 18) $(x+\overline{y})(x+y) = x$ 19) w + (w + (wx)) = w20) x(x + (xy)) = x21) $(\overline{x} + \overline{x}) = x$ 22) $\overline{(x+\overline{x})} = 0$ 23) $w + (w\overline{x}yz) = w(1 + \overline{x}yz) = w$ 24) $\overline{w}(\overline{wxyz}) = \overline{w}(\overline{w} + \overline{x} + \overline{y} + \overline{z}) = \overline{w}$ 25) $xz + \overline{x}y + zy = xz + \overline{x}y$ 26) $(x+z)(\overline{x}+y)(z+y) = (x+z)(\overline{x}+y)$ 27) $\overline{x} + \overline{y} + xy\overline{z} = \overline{x} + \overline{y} + \overline{z}$

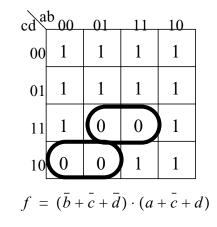
Problem 2:

1.

$$f = (a + (\bar{b} + \bar{c})) \cdot (\bar{c} + (a + b + d) \cdot (\bar{a} + \bar{b} + \bar{d}))$$


i) truth table

ii) Karnaugh map

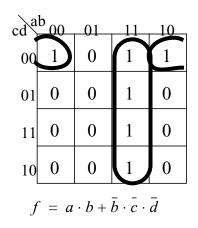

a	b	c	d	f
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

cda	b ₀₀	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	0	0	1
10	0	0	1	1

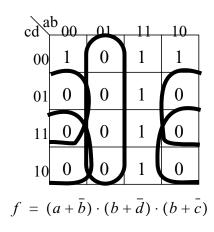
iii) MPS

iv) MSP

$$f = (\bar{c} + a \cdot b) \cdot (\bar{c} + (a + \bar{d}) \cdot (b + \bar{d})) \cdot (c + (a + \bar{b}) \cdot (b + \bar{d}))$$


i) truth table

ii) Karnaugh map


a	b	c	d	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

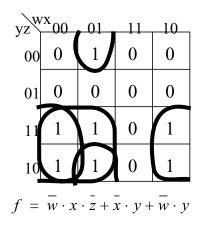
cd	b 00	01	11	_10_
00	^b 00 1	0	1	1
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

iii) MSP

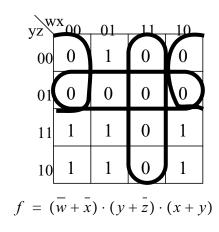
iv) MPS

2.

$$f = \overline{w} \cdot y + w \cdot \overline{x} \cdot y + \overline{w} \cdot x \cdot \overline{z}$$


i) truth table

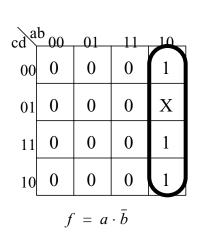
ii) Karnaugh map


W	X	У	Z	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

yz wx 00 01 11 00 0

iii) MSP

iv) MPS



3.

Problem 3:

1. MSP

a)

b)

cda	b 00	01	_11_	_10		
00	0	0	Х	1		
01	0	0	0	0		
11	0	0	0	$\bigcirc 1$		
10	0	0	X	1		
$f = a \cdot \bar{d} + a \cdot \bar{b} \cdot c$						

2. MPS

a)

b)

cd	^b 00	01	-11	_10_	cd	ab 00	01	_11	10
00	0	0	0	1	00	0	0	X	1
01	0	0	0	Х	01	0	0	0	0
11	0	0	0	1	11	0	0	0	1
10	0	0	0	1	10	0	0	X	1
$f = a \cdot \overline{b}$					f =	$a \cdot \overline{b} \cdot$	$(c+\overline{a})$	Ī)	

3. The solutions are unique given that we want the minimal equations.

4. The MSP and MPS in part a are equal. The MSP and MPS in part b are not equal as the don't cares in part 1 are assumed to be 1 and the don't cares in part 2 are assumed to be 0.

Problem 4:

1.
$$\overline{(\overline{a}+c)} \cdot \overline{(b+c)} = (\overline{a}+c) + (b+c) = \overline{a}+b+c$$

2.
$$\overline{a \cdot b \cdot c} = \overline{a} + \overline{b} + c$$

3.
$$\overline{(b+c)} \cdot \overline{(a+c)} \cdot \overline{(a+b)} = (\overline{b} \cdot c) \cdot (a \cdot \overline{c}) \cdot (a \cdot b) = 0$$

Problem 5:

library ieee; use ieee.std_logic_1164.all; entity pset_1_problem_5 is port (a, b, c, d : in std_logic; p1, p2 : out std_logic); end pset_1_problem_5;

architecture structure of pset_1_problem_5 is begin

p1 <= (a and c) or (not a and (b or not c));

p2 <= (not b and not c and d) or (not a and b and d) or (a and not c and d) or (not a and not c and not d);

end structure;