6.111 Lecture # 15

Operational Amplifiers

Parameter	Ideal	'741	'357

- Int Gain A Infinity 200,000/f(Hz) 20x10^6/f(Hz)
- Output Impedance Zout 0 ~75 Ohms

Input Impedance Zin	Infinity	~300 kOhms	~10^12 Ohms
---------------------	----------	------------	-------------

Uses of Op Amps

Analog uses employ negative feedback to drive + input to (nearly) the same potential as the - input

Follower and Non-Inverting Amplifier Circuits:

2

More Analog Circuits

Inverting Amplifier and Differential Input Amplifier

3

1

Positive Feedback

Analog Comparator Is V+ > V- ? Output is a DIGITAL signal Schmitt Trigger squares up signals

Bias Currents

Many Op-Amps have bipolar inputs Emitter coupled transistor pair High differential gain But sum of input currents = Ι_s/β

Pinouts: 8-pin "mini-dip"

Common packaging

Pin 3	Positive Input
Pin 2	Negative Input
Pin 6	Output
Pin 7	Positive Supply

Pin 4 Negative Supply

You may need these pinouts:

8-Pin "Mini-Dip

6

5

Slew Rate

Is related to frequency response

Slew Rate:

'741:0.5 V/µ.sec '357:50 V/µ.sec Summing Junction

If V+ is at zero potential, so is V- (assuming negative feedback) Output voltage is proportional to sum of currents Currents are inversely proportional to resistances, IF voltages are the same

Useful Circuit

9

AD 558

8-Bit D/A Converter You will use in Lab 3

How to build a D/A

Real D/A Converters use a voltage reference and switches Note that since driving point impedance is the same for each cell:

10

Control of AD 558

Is relatively simple Remember -- This is a LATCH Data goes through to analog when G is HIGH Ouput can be very noisy when bits are settling (particularly if the source is something like memory)

Output of AD 558

Much like a Non-Inverting Operational Amplifier Left circuit goes 0 to 2.5 volts Right circuit goes 0 to 10 volts Needs 12 volt power supply!

Analog to Digital Conversion

Harder than Digital to Analog

Several Different Methods are Used: (here are three)

Dual Slope Integration Uses time which can be measured accurately Typically very accurate but slow Not widely used any more

Multiple Conversions (FLASH) Very fast Used for converting TV signals Difficult to make in high precision AD 775

Successive Approximation Medium speed Can be economical AD 670

14

Dual Slope

Dual Slope Integrating A/D Accurate but slow **Requires accurate integrator** And accurate counter and clock

Operation of Dual Slope

First, Counts for known time with input voltage at input to the integrator Then counts with reference voltage at input and measures time

13

Flash Converter

AD 775 Timing: Samples on falling edge, data available on rising edge, 2 1/2 clock cycles later.

TIMING SPECIFICATIONS

	Symbol	Min	Тур	Man	Units
Maximum Conversion Kase Clark Period Clark High Clark Law Deiper Delay Physics Delay	to taal taa taa	20 00 20 20	35 18	31 2.5	Mita m m m m chuit Cycles
Sengting Delay Aportart Jater	App.	-	30		10

Specifications to Specific International International

Voltage Reference

Similar to other flash converters Needs a stable reference voltage Can handle different Ranges of voltage defined by top and bottom of ladder

AD 775 Functional Block Diagram

Caution is required: the ladder is fragile!

Voltage range < 2.8 volts Linearity suffers if < 1.8 volts AV means "Analog Voltage" (supply) If you use this converter, get AV_{DD} set BEFORE connecting to the A/D converter

Successive Approximation A/D

Widely used in low and medium frequency applications (such as audio)

Operation of Successive Approximation A/D

Set one bit at a time D/A generates analog voltage Compare with input If overshot, turn that bit on Finishes in fixed time

21

AD 670

Conversion time 10 microseconds Internal voltage reference Multiple input ranges Two output formats

Control Logic for AD 670

0

1 0

1

0	Unipolar	Binary (unsigned)
0	Bipolar	Binary (unsigned but offset)
1	Unipolar	2's Complement
1	Bipolar	2's Complement

22

AD 670 Can Handle Multiple Input Ranges

High Input Voltage Range 0 to 2.55 V or -1.28 to +1.28 V Strap Pins 17 and 18 to GND Input is Pins 16 (+) and 19 (-)

Low Input Voltage Range 0 to 255 mV or -128 to +128 mV Strap Pins 16 to 17 (+) and 18 to 19 (-)

Timing: Single Conversion Cycle

Assumes /CS and /CE are LOW Need to control these if connected to a bus! Conversion initiated by R/W LOW pulse

25

26

Timing: Multiple Conversion Cycles

Here is what happens if you hold R/W low

Must wait for last conversion to finish

Multiple Conversion Cycles: Must wait for last to finish

A/D, D/A and Aliasing Demo

Control and Digital Section

Analog: Gain and Anti-Aliasing

