Operational Amplifiers

Parameter Ideal '741 '357

Int Gain A Infinity $200,000 / f(\mathrm{~Hz}) \mathbf{2 0 x 1} 0^{\wedge} 6 / f(\mathrm{~Hz})$
Output Impedance Zout $0 \quad \sim 75$ Ohms
Input Impedance Zin Infinity ~300 kOhms ~10^12 Ohms

More Analog Circuits
Inverting Amplifier and Differential Input Amplifier

Uses of Op Amps

Analog uses employ negative feedback to drive + input to (nearly) the same potential as the - input

Follower and Non-Inverting Amplifier Circuits:

$$
v_{\text {out }}=\frac{A}{1+A} v_{\text {in }}
$$

Positive Feedback

Analog Comparator
Is $\mathrm{V}+>\mathrm{V}-$?
Output is a DIGITAL signa Schmitt Trigger squares up signals

Bias Currents

Many Op-Amps have bipolar inputs
Emitter coupled transistor pair
High differential gain
But sum of input currents $=I_{e} / \beta$

Many Op-Amps have FET inputs
Bias currents are very small

Summing Junction

If $\mathrm{V}+$ is at zero potential, so is V - (assuming negative feedback)
Output voltage is proportional to sum of currents
Currents are inversely proportional to resistances, IF voltages are the same

Digital To Analog Converters: Use R - 2R Ladder
Driving Point Impodance is 2/3R
Voltage Divider Ratio, Node-Node is $1 / 2$

Real D/A Converters use a voltage reference and switches Note that since driving point impedance is the same for each cell:

AD 558
8-Bit D/A Converter
You will use in Lab 3

Control of AD 558

Is relatively simple
Remember -- This is a LATCH
Data goes through to analog when G is HIGH
Ouput can be very noisy when bits are settling (particularly if the source is something like memory)

Output of AD 558

Much like a Non-Inverting Operational Amplifier
Left circuit goes 0 to 2.5 volts
Right circuit goes 0 to 10 volts
Needs 12 volt power supply!

Dual Slope Integrating A/D
Accurate but slow
Requires accurate integrator
And accurate counter and clock

Analog to Digital Conversion

Harder than Digital to Analog
Several Different Methods are Used: (here are three)
Dual Slope Integration
Uses time which can be measured accurately
Typically very accurate but slow
Not widely used any more
Multiple Conversions (FLASH)
Very fast
Used for converting TV signals
Difficult to make in high precision
AD 775
Successive Approximation
Medium speed
Can be economical
AD 670

Operation of Dual Slope

First, Counts

for known time
with input voltage at input to the integrator
Then counts
with reference voltage at input
and measures time

Flash Converter

AD 775 Functional Block Diagram

17

18

AD 775 Timing: Samples on falling edge, data available on rising edge,
$21 / 2$ clock cycles later.

TIMING SPECIFICATIONS

	Frouted	90\%	T 7	Stas	Vesis
Maxvant Camerean Kaw Chan7akat Chiviliyb Cubble Peter Dole Thalle thip It anms Senplay Thet Aoviser lifie	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & 11 \\ & \text { n1 } \\ & 31 \\ & 11 \end{aligned}$	$\begin{aligned} & 35 \\ & 10 \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { xa } \\ & \text { is } \end{aligned}$	```Mits # In \|4 eb4 IIT ClasCmb # *```

Voltage Reference
Similar to other flash converters
Needs a stable reference voltage
Can handle different Ranges of voltage defined by top and bottom of ladder

Caution is required: the ladder is fragile!
Voltage range <2.8 volts
Linearity suffers if <1.8 volts
AV means "Analog Voltage" (supply)
If you use this converter, get $A V_{D D}$ set BEFORE connecting to the A/D converter

Successive Approximation A/D
Widely used in low and medium frequency applications (such as audio)

Conversion time 10 microseconds
Internal voltage reference
Multiple input ranges
Two output formats

Operation of Successive Approximation A/D
Set one bit at a time
D/A generates analog voltage
Compare with input
If overshot, turn that bit on
Finishes in fixed time

Control Logic for AD 670

Mode Control:
BPO/UPO Format Input Range Output

0	0
1	0
0	1
1	1

Unipola
Bipolar
Unipolar
Bipolar

Binary (unsigned) Binary (unsigned but offset) 2's Complement 2's Complement

AD 670 Can Handle Multiple Input Ranges

High Input Voltage Range
0 to 2.55 V or
-1.28 to +1.28 V
Strap Pins 17 and 18 to GND
Input is Pins 16 (+) and 19 (-)
Low Input Voltage Range
0 to 255 mV or
-128 to +128 mV
Strap Pins 16 to 17 (+)
and 18 to $19(-)$

Timing: Single Conversion Cycle

Assumes /CS and /CE are LOW
 Need to control these if connected to a bus! Conversion initiated by R/W LOW pulse

Timing: Multiple Conversion Cycles

Here is what happens if you hold R/W low
Must wait for last conversion to finish

Multiple Conversion Cycles: Must wait for last to finish

Control and Digital Section

Analog: Gain and Anti-Aliasing

