Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Lecture \# 2
Now some basics (This IS about digital logic...)

The values here (x and y) represent something like voltage (is it +5 volts (1) or zero (0)? Or is a light ON or OFF?
(That is, anything that can take on one of two values)

AND:

OR:

NOT:

x	y	$x \phi y$
0	0	0
0	1	0
1	0	0
1	1	1
x	0	x
0	0	0
0	1	1
1	0	1
1	1	1

\mathbf{x}	I
$\boldsymbol{0}$	1
1	0

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Identities:

Hoolanir Algehra
Elemail lary:
$A^{*} 0=0$
$A+I=I$
$A * I=A$
$A+0=A$
$A * A=A$
$A+A=A$
$A * \bar{A}=0$
$A+\bar{A}=1$

Cominulaliva:
$A * B=B^{*} A \quad A+B=B+A$
Dishribulive:
$A *(B+C)=A * B+A^{*} C \quad A+\left(H^{*} C\right)=(A+B)^{*}(A+C)$
Atsorplion:
$A *(A+B)=A$
$A+(A * B)=A$
Mamaless:
$A *(\bar{A}+B)=A * B \quad A+\left(\bar{A}^{*} B\right)=A+B$
Concansus:
$(A+B)^{*}(\bar{A}+C)^{*}(B+C) \quad A * B+\bar{A} C+B^{*} C$ $=(A+B)^{*}(A+C) \quad=A * B+A^{*} C$

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

Dalvorgan 's 'Theoram:
$\bar{A} B^{+}+\ldots$
$A+B+\ldots$
$A+\bar{A}+\ldots$
$B^{\prime}+\ldots$
Durality:

x	y	$x+y$	$\overline{(x+y)}$	x	\bar{y}	$x+\bar{y}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

x	y	$x+y$	$\overline{(x+y)}$	x	\bar{y}	$x+\bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

Massachusetts Stoplight Example

$\mathrm{F}=1$ implies stoplight is working correctly
$\mathrm{F}=0$ implies stoplight is busted

Truth Table:

r	y	g	F	$F=$
0	0	0	0	
0	0	1	1	$/ r^{\star} / y^{*} g+$
0	1	0	1	$/ r^{\star} y^{\star} / g+$
0	1	1	0	
1	0	0	1	$r^{\star} / y^{\star} / g+$
1	0	1	0	
1	1	0	1	$r^{\star} y^{\star} / g$
1	1	1	0	

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Obsolete Stoplight Example: Reduction using Boolean Algebra

$$
F=R^{*} / Y^{*} / G+/ R^{*} Y^{*} / G+/ R^{*} / Y^{*} G+R^{*} Y^{*} / G
$$

Step 1: Since $Y+/ Y=1$,

$$
R^{*} / Y^{*} / G+R^{*} Y^{*} / G=R^{*}(Y+/ Y)^{*} / G=R^{*} / G
$$

$F=R^{*} / G+/ R^{*} Y^{*} / G+/ R^{*} / Y^{*} G$
Step 2: Use Absorption: $R+R^{*} Y=R+Y$

$$
R^{*} / G+/ R^{*} Y^{*} / G=\left(R+/ R^{*} Y\right)^{*} / G=(R+Y)^{*} / G
$$

$F=(R+Y)^{*} / G+/ R^{*} / Y^{*} G=R^{*} / G+Y^{*} / G+/ R^{*} / Y^{*} G$
Using Demorgan:
$/ F=\left(\left(/ R^{*} / Y\right)+G\right)^{*}\left(/ G+\left(R^{*} Y\right)\right)=/ R^{*} / Y^{*} / G+G^{*}(R+Y)$

Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.111 Introductory Digital Systems Laboratory

Truth Table:

r y g	F	Or look at the zeros:
000	0	$/ F=/ r^{*} / y^{*} / g+/ r^{*} y^{*} g+r^{*} / y^{*} g+r^{*} y^{*} g$
001	1	Slide 3
010	1	Which, by Demorgan (Duality) is:
011	0	
100	1	$F=(/ r+/ y+/ g)^{*}(/ r+y+g)^{*}(r+/ y+g)^{*}(r+y+g)$
101	0	
110	1	
111	0	

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Common Logic Functions and Gate Symbols

			\mathbf{x} \mathbf{f} 0×0
AND		$\mathbf{x}-\square-\mathbf{f}$	$\begin{array}{ll\|l} \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$
OR			x y f 0 0 0 0 1 1 1 0 1 1 1 1
NAND (Not AND)			x y f 0 0 1 0 1 1 1 0 1 1 1 0
NOR (Not OR)			x y f 0 0 1 0 1 0 1 0 0 1 1 0

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

Karnaugh Maps are:

1. A simple re-mapping of truth tables
2. A graphical means of reducing logic functions

$$
X=X^{*} Y+X^{*} \bar{Y}
$$

$$
\bar{X}=\bar{X}+Y)^{*}(\bar{X}+\bar{Y})
$$

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.111 Introductory Digital Systems Laboratory

Logic Function Implementation: Gates

MSP: OR of ANDs Circle 1's

$$
F=a^{*}(b+c)
$$

MPS: AND of ORs Circle 0's

$$
F=a^{*} b+a^{*} \mathbf{c}=a^{*}(b+c) \quad / F=/(/ a+/(b+c))=/\left(/ a+\left(/ b^{*} / c\right)\right)
$$

$$
\mathrm{F}=/ \mathrm{a}+/ \mathrm{b}^{*} / \mathrm{c}
$$

> Massachusetts Institute of Technology
> Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

K- maps are useful for 3-6 variables (HARD for > 4!) Adjacent cells have one bit change, like a Gray Code

Karnaugh Maps
Truth Table

A	B	C	Cell
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

4- Input K map

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Massachusetts Stoplight Check Function

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

The simplest groups are the largest: this is how we can use K-maps to simplify logical expressions

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

Simplest Groupings are the largest

This one is more complex than need be!

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Groupings may not be unique!

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Or MSP may be unique and MPS not, or vice versa

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory
"Don't Cares" can simplify things: (impossible inputs, for example)

$M S P=/ b / d+b d+/ a c d \quad M P S=(b+d) *(a+/ c+/ d) *(a+c+/ d)$

Here $\mathbf{a b c d}=0101,1111$ and 1001 are "don't care"s
Note that MSP may not equal MPS (and doesn't here)

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Now, there are some functions you can't do very much with:
Like this one: a "parity" function $F=\overline{\mathbf{a}} \mathbf{b} \overline{\mathbf{c}}+\mathbf{a} \overline{\mathbf{b}} \overline{\mathbf{c}}+\overline{\mathbf{a}} \overline{\mathbf{b}} \mathbf{c}+\mathbf{a b} \mathbf{b}$

It can be implemented with this (new) function, the "exclusive OR"

$$
\begin{aligned}
& \left.=(\overline{\mathbf{a}} \mathbf{b}+\bar{a} \bar{b})^{*} \mathbf{c}+\overline{(a b}+\mathbf{a b}\right)^{*} \mathbf{c} \\
& \left.=(\mathbf{a} \oplus \mathbf{~})^{\boldsymbol{*}} \mathbf{c}+\overline{(\boldsymbol{a} \oplus \mathbf{b}}\right)^{*} \mathbf{c} \\
& =(\mathbf{a} \oplus \mathbf{b}) \oplus \mathbf{c} \\
& F=\overline{\mathbf{a}} \mathbf{b} \overline{\mathbf{c}}+\mathbf{a} \overline{\mathbf{b}} \overline{\mathbf{c}}+\overline{\mathbf{a}} \overline{\mathbf{b}} \mathbf{c}+\mathbf{a} \mathbf{b} \mathbf{c} \\
& \left.=(\bar{a} b+\bar{a} \bar{b})^{*} \mathbf{c}+\overline{(a b+a b}\right)^{*} \mathbf{c} \\
& \left.=(\mathbf{a} \oplus \mathbf{b})^{\bar{*}} \mathbf{c}+\overline{(a \oplus)}\right)^{*} \mathbf{c} \\
& =(\mathbf{a} \oplus \mathbf{b}) \oplus \mathbf{c}
\end{aligned}
$$

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Exclusive OR $\quad \mathbf{F}=\mathbf{X}(\mathbf{Y}$

> Massachusetts Institute of Technology
> Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory
if file foo.txt contains:

$$
\begin{aligned}
& \mathbf{a}=(\mathbf{x}+\mathbf{z})^{*}(/ \mathbf{x}+\mathbf{y})^{*}(\mathbf{z}+\mathbf{y}) ; \\
& \mathbf{b}=\mathbf{a}^{\wedge} \mathbf{c} ; \\
& \mathbf{d}=\mathbf{x}^{*} \mathbf{a} ;
\end{aligned}
$$

then if you do:

> reduce -b < foo.txt > foo_out.txt
you get in foo.out:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x}^{*} \mathrm{y}+/ \mathrm{x}^{*} \mathrm{z} ; \\
& / \mathrm{a}=\mathrm{x}^{*} / \mathrm{y}+/ \mathrm{x}^{*} / \mathrm{z} ; \\
& \mathrm{b}=\mathrm{a}^{*} / \mathrm{c}+/ \mathrm{a}^{*} \mathrm{c} ; \\
& / \mathrm{b}=/ \mathrm{a}^{*} / \mathrm{c}+\mathrm{a}^{*} \mathrm{c} ; \\
& \mathrm{d}=\mathrm{x}^{*} \mathrm{a} ; \\
& / \mathrm{d}=/ \mathrm{a}+\mathrm{x}
\end{aligned}
$$

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Massachusetts Stoplight Check:

Done with real gates: NAND's

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

Here it is with NOR gates

$$
\text { MPS }=(r+y+g)^{*}(/ g+/ r)^{*}(/ g+/ y)
$$

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

These are typical numbers, but there are many exceptions. i.e. Read the data sheets to be sure.

Voltage Levels For TTL:
High
Low

Output

$$
\begin{array}{ll}
>2.0 & >2.7 \\
<0.8 & <0.4
\end{array}
$$

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

Totem Pole Output

 (Common for TTL)

TTL Totem Pole Outputs can draw LARGE current spikes on switching

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Some outputs are open collector: need a pull-up resistor. Speed is affected by $R_{\text {ext }}$ and by external and junction capacitance

Open collector gates can be wired together like this to make 'wired AND's.

This is a 'bus' that can be driven by more than one input source

You can't do this with Totem Pole outputs!

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.111 Introductory Digital Systems Laboratory

Static Hazards: Consider this function:

$$
\mathbf{F}=\mathbf{A} * \overline{\mathbf{C}}+\mathbf{B} * \mathbf{C}
$$

Consider this transient:
$\mathrm{A}=\mathbf{B}=\mathbf{1}$

The 'glitch is the result of timing differences in parallel data paths.

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science 6.111 Introductory Digital Systems Laboratory

The 'glitch is the result of timing differences in parallel data paths. It is associated with the function jumping between 'patches' or product terms on the K-map. To fix it, cover it up with another patch!

	00	01	11	10
0	0	0	1	1
1	0	1	1.	0

$$
\mathbf{F}=\mathbf{A} * \overline{\mathbf{C}}+\mathbf{B} * \mathbf{C}+\mathbf{A} * \mathbf{B}
$$

