L2: Combinational Logic Design

(Construction and Boolean Algebra)

Acknowledgements:

Materials in this lecture are courtesy of the following sources and are used with permission.

Prof. Randy Katz (Unified Microelectronics Corporation Distinguished Professor in Electrical
Engineering and Computer Science at the University of California, Berkeley) and Prof. Gaetano
Borriello (University of Washington Department of Computer Science \& Engineering) from Chapter 2 of R. Katz, G. Borriello. Contemporary Logic Design. 2nd ed. Pentice-Hall/Pearson Education, 2005.
J. Rabaey, A. Chandrakasan, B. Nikolic. Digital Integrated Circuits: A Design Perspective. Prentice Hall/Pearson, 2003.

Review: Noise Margin

- Large noise margins protect against various noise sources

Illiit

NMOS ON when Switch Input is High

NMOS Device Characteristics

$>$ MOS is a very non-linear.
 $>$ Switch-resistor model sufficient for first order analysis.

PMOS ON when Switch Input is Low

Switch Model

Inverter VTC: Load Line Analysis

CMOS gates have:

- Rail-to-rail swing (0 V to V_{DD})
- Large noise margins
- "zero" static power dissipation

There are 16 possible functions of 2 input variables:

In general, there are $2\left(2^{\wedge n}\right)$ functions of n inputs

Common Logic Gates

Gate

NAND

Symbol

Truth-Table

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	0

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

Expression

$$
\mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}
$$

$$
\mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}
$$

$$
\mathbf{Z}=\mathbf{X}+\mathbf{Y}
$$

$$
\mathrm{Z}=\mathrm{X}+\mathbf{Y}
$$

XOR
$(X \oplus Y)$

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

$$
\begin{gathered}
Z=\bar{X} \bar{Y}+X Y \\
X \text { and } Y \text { the same } \\
\text { ("equality") }
\end{gathered}
$$

Widely used in arithmetic structures such as adders and multipliers

Generic CMOS Recipe

How do you build a 2 -input NOR Gate?

- Elementary

1. $X+0=x$
2. $X+1=1$
3. $X+X=X$
4. $(\bar{X})=X$
5. $X+\bar{X}=1$

- Commutativity:

6. $X+Y=Y+X$

- Associativity:

$$
\text { 7. }(X+Y)+Z=X+(Y+Z) \quad \text { 7D. }(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)
$$

- Distributivity:

$$
\text { 8. } X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z) \quad 8 D . \quad X+(Y \cdot Z)=(X+Y) \cdot(X+Z)
$$

- Uniting:

9. $X \cdot Y+X \cdot \bar{Y}=X$
9D. $(X+Y) \cdot(X+\bar{Y})=X$

- Absorption:

10. $X+X \cdot Y=X$
10D. $X \cdot(X+Y)=X$
11. $(X+\bar{Y}) \cdot Y=X \cdot Y$

- Factoring:

12. $(X \cdot Y)+(X \cdot Z)=$ $X \cdot(Y+Z)$

12D. $(X+Y) \cdot(X+Z)=$ $X+(Y \cdot Z)$

- Consensus:

13. $(X \cdot Y)+(Y \cdot Z)+(\bar{X} \cdot Z)=$ $X \cdot Y+\bar{X} \cdot Z$

13D. $(X+Y) \cdot(Y \pm Z) \cdot(\bar{X}+Z)=$

$$
(X+Y) \cdot(\bar{X}+Z)
$$

- De Morgan's:

14. $\overline{(X+Y+\ldots)}=\bar{X} \cdot \bar{Y} \cdot \ldots \quad$ 14D. $\overline{(X \cdot Y \cdot \ldots)}=\bar{X}+\bar{Y}+\ldots$

- Generalized De Morgan's:

15. $\bar{f}(X 1, X 2, \ldots, X n, 0,1,+, \bullet)=f(\overline{X 1}, \overline{X 2}, \ldots, \overline{X n}, 1,0, \bullet,+)$

- Duality
\square Dual of a Boolean expression is derived by replacing • by +, + by •, 0 by 1, and 1 by 0 , and leaving variables unchanged
ㅁ $\mathrm{f}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn}, 0,1,+, \bullet) \Leftrightarrow f(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn}, 1,0, \bullet,+$)
- 1-bit binary adder - inputs: A, B, Carry-in - outputs: Sum, Carry-out

A	B	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

> Sum-of-Products Canonical Form
> $S=\bar{A} \bar{B} C$ in $+\bar{A} B \overline{C i n}+A \bar{B} \overline{C i n}+A B C$ in
> Cout $=\bar{A} B C$ cin $+A \bar{B} C$ in $+A B \overline{C i n}+A B C$ in

- Product term (or minterm)
\square ANDed product of literals - input combination for which output is true
\square Each variable appears exactly once, in true or inverted form (but not both)

$$
\begin{aligned}
\text { Cout } & =\bar{A} B C \text { in }+A \bar{B} C \text { in }+A B \overline{C i n}+A B C \text { in } \\
& =\bar{A} B C \text { in }+A B C \text { in }+A \bar{B} C \text { in }+A B C \text { in }+A B \overline{C i n}+A B C \text { in } \\
& =(\bar{A}+A) B C \text { in }+A(\bar{B}+B) C \text { in }+A B(\overline{C i n}+C i n) \\
& =B C i n+A C i n+A B \\
& =(B+A) C \text { in }+A B
\end{aligned}
$$

$$
\begin{aligned}
S & =\bar{A} \bar{B} C i n+\bar{A} B \overline{C i n}+A \bar{B} \overline{C i n}+A B C \operatorname{Cin} \\
& =(\bar{A} \bar{B}+A B) C i n+(A \bar{B}+\bar{A} B) \overline{C i n} \\
& =(\bar{A} \oplus B) C i n+(A \oplus B) \overline{C i n} \\
& =A \oplus B \oplus C i n
\end{aligned}
$$

Sum-of-Products \& Product-of-Sum

- Product term (or minterm): ANDed product of literals - input combination for which output is true

A	B	c	minterms	
0	0	0	$\bar{A} \bar{B} \bar{C}$	m0
0	0	1	$\bar{A} \bar{B} C$	m1
0	1	0	$\bar{A} B \bar{C}$	m2
0	1	1	$\bar{A} B C$	m3
1	0	0	$A \bar{B} \bar{C}$	m4
1	0	1	$A \bar{B} C$	m5
1	1	0	$A B \bar{C}$	m6
1	1	1	$A B C$	m7

F in canonical form:

$$
\begin{aligned}
F(A, B, C) & =\sum m(1,3,5,6,7) \\
& =m 1+m 3+m 5+m 6+m 7 \\
F & =\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C \\
\text { canonical form } & \neq m \text { minimal form } \\
F(A, B, C) & =\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B C+A B \bar{C} \\
& =(\bar{A} \bar{B}+\bar{A} B+A \bar{B}+A B) C+A B \bar{C} \\
& =((\bar{A}+A)(\bar{B}+B)) C+A B \bar{C} \\
& =C+A B \bar{C}=A B \bar{C}+C=A B+C
\end{aligned}
$$

short-hand notation form in terms of 3 variables

- Sum term (or maxterm) - ORed sum of literals - input combination for which output is false

A	B	C	maxterms	
0	0	0	$A+B+C$	$M 0$
0	0	1	$A+B+\bar{C}$	$M 1$
0	1	0	$A+\bar{B}+C$	$M 2$
0	1	1	$A+\bar{B}+\bar{C}$	$M 3$
1	0	0	$\bar{A}+B+C$	$M 4$
1	0	1	$\bar{A}+B+\bar{C}$	$M 5$
1	1	0	$\bar{A}+\bar{B}+C$	$M 6$
1	1	1	$\bar{A}+\bar{B}+\bar{C}$	$M 7$

short-hand notation for maxterms of 3 variables
F in canonical form:

$$
\begin{aligned}
& F(A, B, C)= \Pi M(0,2,4) \\
&= M 0 \cdot M 2 \cdot M 4 \\
&=(A+B+C)(A+\bar{B}+C)(\bar{A}+B+C) \\
& \text { canonical form } \neq \text { minimal form } \\
& F(A, B, C)=(A+B+C)(A+\bar{B}+C)(\bar{A}+B+C) \\
&=(A+B+C)(A+\bar{B}+C) \\
&(A+B+C)(\bar{A}+B+C) \\
&=(A+C)(B+C)
\end{aligned}
$$

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand replace minterm indices with the indices not already used

$$
\text { E.g., } F(A, B, C)=\Sigma m(3,4,5,6,7)=\Pi М(0,1,2)
$$

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used

$$
\text { E.g., } F(A, B, C)=\Pi M(0,1,2)=\Sigma m(3,4,5,6,7)
$$

3. Minterm expansion of F to Minterm expansion of F^{\prime} :
in minterm shorthand form, list the indices not already used in F

$$
\text { E.g., } \begin{aligned}
F(A, B, C) & =\sum m(3,4,5,6,7) \quad \longrightarrow \quad F^{\prime}(A, B, C) \\
& =\sum m(0,1,2) \\
& =\Pi M(3,4,5,6,7)
\end{aligned}
$$

4. Minterm expansion of F to Maxterm expansion of F^{\prime} : rewrite in Maxterm form, using the same indices as F

$$
\text { E.g., } \begin{aligned}
F(A, B, C) & =\sum m(3,4,5,6,7) \\
& =\Pi M(0,1,2)
\end{aligned} \quad \longrightarrow \quad F^{\prime}(A, B, C)=\Pi M(3,4,5,6,7) ~=~=\Sigma m(0,1,2)
$$

- Key tool to simplification: $A(\bar{B}+B)=A$

■ Essence of simplification of two-level logic
\square Find two element subsets of the ON-set where only one variable changes its value - this single varying variable can be eliminated and a single product term used to represent both elements

$$
F=\bar{A} \bar{B}+A \bar{B}=(\bar{A}+A) \bar{B}=\bar{B}
$$

- Just another way to represent truth table

■ Visual technique for identifying when the uniting theorem can be applied

- n input variables = n-dimensional "cube"

Illii Mapping Truth Tables onto Boolean Cubes Illii

- Uniting theorem

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

adjacency plane. Each adjacency p
corresponds to a product term.
ON-set = solid nodes
OFF-set = empty nodes

- Three variable example: Binary full-adder carry-out logic

			Cout
A	B	Cin	Con
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

The on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Higher Dimension Cubes

- In a 3-cube (three variables):
- 0 -cube, i.e., a single node, yields a term in 3 literals
$\square 1$-cube, i.e., a line of two nodes, yields a term in 2 literals
- 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
- 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
- m -subcube within an n -cube ($\mathrm{m}<\mathrm{n}$) yields a term with $\mathrm{n}-\mathrm{m}$ literals

Karnaugh Maps

- Alternative to truth-tables to help visualize adjacencies
\square Guide to applying the uniting theorem - On-set elements with only one variable changing value are adjacent unlike in a linear truth-table

$B A^{A} \quad 0 \quad 1$	
$00_{0} 1$	2^{1}
$11_{1} 0$	30

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

- Numbering scheme based on Gray-code
- e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)

K-Map Examples

Cout $=$

$$
F(A, B, C)=\Sigma m(0,4,5,7)
$$

$$
F=
$$

$$
F(A, B, C)=
$$

F' simply replace 1's with 0's and vice versa

$$
F^{\prime}(A, B, C)=\Sigma m(1,2,3,6)
$$

$$
F^{\prime}=
$$

K-Map Example: Don't Cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do so

$$
\begin{aligned}
F(A, B, C, D) & =\Sigma m(1,3,5,7,9)+\Sigma d(6,12,13) \\
F & =\bar{A} D+\bar{B} \bar{C} D \text { w/o don't cares } \\
F & =\bar{C} D+\bar{A} D \quad \text { w/ don't cares }
\end{aligned}
$$

By treating this DC as a "1", a 2-cube can be formed rather than one 0 -cube

In PoS form: $F=D(\bar{A}+\bar{C})$
Equivalent answer as above, but fewer literals

Figure by MIT OpenCourseWare.

Fixing Hazards

The glitch is the result of timing differences in parallel data paths. It is associated with the function jumping between groupings or product terms on the K-map. To fix it, cover it up with another grouping or product term!

Figure by MIT OpenCourseWare.

- In general, it is difficult to avoid hazards - need a robust design methodology to deal with hazards.

