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Abstract: 
This laboratory used a Xilinx FPGA to create a video surveillance system with wireless transmission as a digital circuit. The 
surveillance system was fully functional and able to capture, encode, and transmit and image, as well as receive, decode, and 
display the image. ModelSim simulations were used to test the various modules of the surveillance system, as well as Verilog 
test benches. After a comprehensive suite of tests found no errors in the design, the surveillance system was programmed into 
a FPGA and passed physical testing as well. 
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Operational Overview 

The problem with conventional security systems today is that they are mostly wired, meaning the security station must be 
placed within a fixed distance from the camera.  This usually means that the security camera must be placed in a fixed 
location because it is difficult to move a wire embedded in the wall or ceiling of a building.  In order to provide more 
flexibility, this project implemented a wireless security system where image data is sent wirelessly to a receiver station and 
displayed on the screen.  However, in a wireless system where the transfer rate is more restrictive than a wired system, the 
information must be condensed in some form.  This particular system uses a proprietary DCT based encoding method similar 
to JPEG encoding to decrease the size of the image data. 

There are six main components of this system.  Image data must be captured, encoded, transmitted wirelessly, received 
wirelessly, decoded, and displayed on the monitor.  A system diagram if provided in Figure 1. 
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Figure 1 – System Diagram 

The system was designed with modularity in mind. In order to achieve this, every subsystem is separated by a memory 
interface.   

In normal operation, analog camera data is converted to a digital bit stream by ADV7185 chip on the labkit.  Then this data is 
organized into a 240X240 pixel image, stripped of any chrominance (color) values, and written into memory so that it can be 
encoded.  The encoder module processes the stored image by applying a Discrete Cosine Transform to 8x8 pixel blocks. The 
resulting coefficients are sent through the RS323 transmitter to the wireless transmitter. The encoded data is then divided into 
10 byte packets and transmitted across the wireless channel. Once the data has been received, the wireless receiver sends the 
data to the receiver labkit via the RS232 interface and commits the data to memory to be decoded.  Using the Inverse DCT 
algorithm, the encoded data is decoded into grayscale pixels. These pixels are displayed on the screen in an image by the 
video display unit. 

A 240X240 grayscale image contains nearly half a mega bit of information.  The challenge of this project was to decrease it 
to the smallest size possible in order to maximize the update rate (in frames/second) and still maintain a recognizable picture.  
Here, it was possible to take a 512 bit block of information (an 8X8 pixel block) and condense it down to 78 bits (70,200 bits 
for a full image).  By using a variant of JPEG encoding, it is possible to retain much of the visible information in an image, 
while still compressing the information to just a few bytes. Our compression algorithm discarded 85% of the encoded 
coefficients, and was still able to transmit a coherent picture. Based on this compression and our wireless channel, we were 
able to achieve approximately one frame of video per second. 
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Module Description and Implementation 

Capture-Encode-Transmit System 

Video Capture (RAYMOND) 
The Video Capture module has many sub-modules within it (NTSC Decoder, Store 64, Set Address, VGA Controller, 
Display, and Delay) whose functions will be described later.  The main purpose of the Video Capture module is to connect all 
the sub-modules together and maintain an internal pixel counter and line counter for the data coming from the camera, which 
is in NTSC format.  The reason why an internal pixel counter and line counter are needed is because one of the sub-modules, 
NTSC Decoder, only provides the start and end of lines and not the exact line number or pixel number. To compensate for 
this lack of information, Video Capture uses the State output from the NTSC Decoder to initialize its internal counter and line 
counter.  Then, every time the data is valid (another output from the NTSC Decoder), it increments the internal pixel counter. 
To increment the internal line counter, it uses the State output from the NTSC decoder.  For example, if the State output 
indicates the beginning of a line, and the input from the camera indicates it is in the field just before the active odd lines, then 
the internal line counter will reset to 0.  So, when the State output indicates the beginning of a line and the camera input 
indicates it is now in the active odd lines, the internal line counter will increment. 

Figure 2 – Block diagram of Video Capture Module. 

To reset back to pixel_count_internal = 0, Video Capture waits until the camera is at the beginning of a line.  To reset back to 
line_count_internal = 0, Video Capture waits until the camera is at the beginning of a line and shows it is in the blanking field 
just before the odd active field. 

Another important purpose of the Video Capture module is that it writes color data into the color memory block (24X57600).  
When the data is valid, 0 <= pixel_count_internal <= 239, and 0 <= line_count_internal <= 239, then it activates the write 
enable signal for the color memory block for one clock cycle and increments the address.  To account for the delay in color 
conversion, the address and write enable signals are delayed for three clock cycles.   

NTSC Decoder 
The NTSC Decoder module takes in the 20 bit input, tv_in_ycrcb, from the ADV7185, which converts the analog video 
signal to a digital signal, and decodes position indicators to figure out what part of the picture is being transmitted.  The 
NTSC Decoder does not provide an exact location in terms of which pixel or line it is on but rather the start and end of lines. 
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At the start or end of a line, the ADV7185 sends the same sequence of bits of information followed by a position indicator in 
the following form: 

FF 00 00 XY 
*Note: example shown in hexadecimal and only shows top 8 bits of information 

where FF 00 00 indicates the start or end of a line and XY is the position indicator.  The significant outputs from the NTSC 
decoder are State, which indicates which field it is about to enter (odd/even, active/blanking, etc), data_valid, which indicates 
when the YCrCb output is valid, and the YCrCb value itself. 

The useful part of the NTSC decoder for this project is that it indicates when it reaches the beginning of the odd or even 
active lines coming from the camera and indicates when the data is valid, meaning the camera has output a chrominance and 
luminance value for one pixel (2 clock cycles).  

Store 64 
The Store 64 module is used to write grayscale data into memory used by the encoder module.  It uses line_count_internal, 
pixel_count_internal, Y, and data_valid to gather 64 bits of data to be written to the encoder memory.  It has two internal 
counters, data_counter and data_counter2, the first of which keeps track of when the 64 output shift register is full, the 
second of which keeps track of when a line (240 pixels) has passed.  It also has a two bit counter called every_other.  Because 
NTSC provides the odd lines and then the even lines, the picture of just one of these fields is twice as wide as it is tall.  To 
compensate for this, every_other will toggle on data_valid so that the shift register will only accept every other pixel to 
produce a proportional image.  The shift register starts and resets its internal counter every time the internal pixel counter is 0 
and the internal line counter is within the active range (12 to 251). When it receives a data_valid, it checks the value of 
every_other. If every_other is 0, it shifts data in and changes every other to 1. If every_other is 1, it changes the value to 
every_other to 0 and ignores the current Y value.   

Set Address 
This module is responsible for setting the address the data from the Store 64 shift register is written to.  Before describing 
how this module works, it is important to note that the data and address lines output from this module are tied to the input 
data line for all eight memory blocks in the encoder memory structure.  This is because the data and address are always 
coming from the same source; the difference comes from writing the data sequentially to the eight blocks such that the 
encoder can utilize all the data it needs to (512 bits).  A state transition diagram is provided in Figure 3. Essentially, data is 
shifted in until the shift register is full, at which point the data is written into the corresponding memory block for proper 
encoding. 

Figure 3 – Set Address Finite State Machine 

Mathematically speaking, there are 240 pixels in a line or thirty 64-bit packets.  Each 64 bit packet is written sequentially into 
one memory block until the beginning of a new line, at which point, the new-line 64 bit packets are written to the next 
memory block.  Once eight lines have been written, the base address incremented by 30 and the process starts again with data 
being written to the first memory block.  The Figure provided to help visualize this process. 
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VGA Controller 
The VGA controller coordinates the signals that display images on the monitor. Every clock cycle, pixel_count increments by 
one and resets to zero once it hits 799. Line_count increments every time pixel_count hits 0 except when line_count is 524 
and pixel_count is 799.  Then both counters begin again from 0.  There are two blank signals, one for the horizontal and one 
for the vertical directions, as well as two sync signals.  The blank signal is pulled low whenever the screen should be blank. 
In this case, once a line has been drawn across the screen (pixel_count = 640) then hblank (horizontal blank) should be pulled 
low otherwise it would draw a line across the screen before it starts on the next line.  The same goes for vblank only it goes 
low when line_count = 480. Vga_out_blank_b is the And of hblank and vblank. 

The sync signals are similar only they are pulled low for a shorter period than hblank or vblank and are pulled low after 
hblank or vblank has been disabled.  Sync signals have what are known as the front porch, sync pulse, and back porch.  For 
the horizontal sync signal (hsync) the front porch is 16 clock cycles at the end of which the signal is pulled low, the sync 
pulse is 96 clock cycles (the period of time hsync remains low), and the back porch is 48 clock cycles, at the beginning of 
which hsync is pulled high.  For vsync, the difference is the length of these intervals, 11,2, and 31 respectively, and applies as 
line_count increments, not pixel_count. Hsync runs off of the pixel counter and vsync runs off of the line counter.  How the 
outputs change according to the counter values in Table 1. Using a 27 Mhz clock, this provides a refresh rate of 60 Hz.   

Table 1 – Blanking and Synching Signal Values 

Signal Condition Value 
Hblank Pixel_count <= 640 1, 0 otherwise 
Hsync 656 < pixel_count <= 752 0, 1 otherwise 
Vblank Line_count <= 480 1, 0 otherwise 
Vsync 491 < line_count <= 493 0, 1 otherwise 

Delay 
The purpose of the delay is to ensure the sync signals (hsync and vsync) are output the same time as the RGB signals are 
generated by the ADV7125 IC (it is necessary because the IC is pipelined).  The delay will delay the sync signals by 2 clock 
cycles. 

YCrCb to RGB Converter  
This purpose of this module is to convert the YCrCb values for a given pixel into a 24-bit RGB value so it can be displayed 
on the screen. The conversion from Y, Cr, and Cb values into R, G, B values is given below: 

R' = 1.164 (Y – 16) + 1.596 (Cr – 128)

G' = 1.164 (Y – 16) + 0.813 (Cr – 128) – 0.392 (Cb – 128)


B' = 1.164 (Y – 16) + 1.596 (Cr – 128)


*Note: R', G', B' are gamma-corrected RGB values 


This module is a three stage pipeline so if Y, Cr, Cb are input at t = 0, then the output will not be valid until t = 3.  This is 
important when the display sets the address for the color memory. 

Display 
The Display module is responsible for drawing the screen by telling the monitor what color to output for every pixel.  It does 
this by keeping track of where it is horizontally with pixel_count and where it is vertically with line_count.  From these two 
counters it is able to draw a 640 X 480 resolution screen.   

This module displays the screen by reading from memory, either the color memory on the encoder side or grayscale memory 
on the decoder side depending on which labkit it us being run on.  The Display module controls which memory location is 
being read from the color memory block.  Because the color memory block has enough memory locations for one 240 X 240 
pixel frame, this module will increment every time pixel_count increments within the picture frame.  For example, if the 
picture starts on the tenth line and the eighth pixel, then Display will reset every every time line_count = 8 and pixel_count = 
797 and increments every time pixel_count increments when pixel_count is between 0 and 239.  The reason why it doesn’t 
reset at line_count = 9 and pixel_count = 0, is because there is a delay of three clock cycles between the converted RGB 
values and valid YCrCb values.  Thus when it is written into memory, it is lagging by three clock cycles. 

7




The Read 64 module is responsible for reading what the decoder writes into video memory on the receiving end and outputs 
the correct grayscale (RGB = {Y, Y, Y}) value for a particular line_count and pixel_count combination.  Therefore, the 
display module only outputs the RGB value from the Read 64 module when it is supposed to.   

If pixel_count and line_count are neither in the color picture part of the screen or the grayscale part of the screen, then the 
display can output any background color (this project outputted a vga_out = 24’habcdef). 

Video Memory (Encoder) 
The video memory module is written by the video capture module and read by the encoder module. The video memory stores 
the 240x240 pixel captured image so that it can be encoded. The module uses eight instantiated 64x900 dual-port block 
memories in order to store the full picture. Each block memory has one dedicated write port for the video capture module, 
and one dedicated read port for the encoder module. This memory architecture was chosen because the original 
implementation required eight simultaneous memory accesses, and each memory needed to be written and read 
simultaneously. The eight simultaneous memory accesses were later removed, but the memory architecture remained. 

The video memory module is given input data, write enable, and write address signals from the video capture module. These 
inputs are used to write input data into memory. The encoder block gives the video memory a macro-line, block, and inter-
block row which are converted into a memory address. This memory address is used to select the specific output pixel row 
for encoding. 

Figure 4 – Writing to Video Memory Process 

Each memory address holds 8 pixels of grayscale information. Each memory holds 240 sequential pixels from the video 
capture module in 30 sequential memory addresses. Each 240 pixel line of video data is loaded in each memory sequentially, 
with the first line being written to the first memory, the second to the second memory and so forth. The ninth line of memory 
is then written again in the next 30 memory addresses of the first memory. The memory storage is shown in Figure 4. 

Encoder (VIVEK) 
The encoder module takes in grayscale information from the video memory and performs a proprietary Discrete Cosine 
Transform (DCT) based compression algorithm. This is based on the JPEG standard of image compressions and the visual 
irrelevance of high frequency noise to the human eye. The encoder converts 512 bits of data for each 8x8 pixel block into six 
13-bit DCT coefficients, which is a compression of over 85%. The encoder module stores the output data in the wireless 
memory. 

The encoder is overall a 4-stage pipeline with valid data appearing every eight clock cycles. In addition the encoder module 
takes in the macro-line being written from the video capture module and a transmit busy signal from the wireless transmitter. 
The encode module outputs an encode busy signal and the memory address of the coefficient block it is writing to the 
wireless memory. In addition, the encoder module outputs the macro-line, block, and inter-block row that need to be read 
from video memory. The wireless memory is accessed by outputting the block number as the address and a write enable 
signal. 
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Equation 1 – Matrix novation of DCT using 8x8 matrices. 

DCT = T * IMG *T ′ 

Equation 2 – Two dimensional Discrete Consine Transform algorithm. 

Figure 5 – DCT coefficients used in the encoded block. 

The 2-dimensional DCT algorithm is shown in matrix form in Equation 1 and computation form in Equation 2. The encoding 
algorithm is implemented using a matrix multiplication with the DCT coefficient matrix. The DCT converts the 8x8 block 
into frequency data, with low frequency components in the top left corner and high frequency information in the lower right 
corner. The human eye is unable to discern high frequency information well, so the elimination of high frequency coefficients 
does not significantly affect picture quality and allows high levels of compression. The compression algorithm used 
eliminates over 90% of the available DCT coefficients, storing only the 6 coefficients in the top left corner in memory. The 
encoded coefficients are 13-bit signed numbers. A diagram of example DCT coefficients is shown in Figure 5.  

The encoder module consists of three major components: the DCT multiply module, encoder FSM, and encode memory 
register.  The top level block diagram is specified in Figure 6. 

Figure 6 – Block diagram for encoder module. 
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DCT Multiply  
The DCT multiply module takes a row of eight input pixels and performs a matrix multiplication. The module takes in eight 
rows of 8 pixels each and a column selector signal to multiply two 8x8 matrices together. The total matrix multiplication 
takes 64 clock cycles to complete, with a column of valid output coefficients appearing every 8 clock cycles. The DCT 
multiply module takes input data from the video memory. One caveat is that the input data from the video memory are 
unsigned 8-bit pixels values and the DCT multiplication requires signed numbers. Since all video capture coefficients are 
positive, each pixel value is sign extended before entering the DCT multiply module. 

The matrix multiplication within the DCT multiply module is done using fixed point math. The numbers are multiplied 
together and the decimal point is noted. The output of the DCT multiply is a truncated version of the final coefficient, 
rounded to the nearest integer value. Fixed point math is necessary because the DCT coefficients are all numbers less than 
one. Fixed point was implemented instead of floating point to simplify the math functions necessary to calculate the output 
coefficients and to ensure that no data was lost or truncated unless explicitly done by the module. 

The DCT multiply module contains four main sub-modules: DCT front, the multiplier shift register, DCT table and DCT 
back. The DCT multiply module takes in the column select value and selects the output row from the DCT table module to 
multiply against the input row. The output is the output coefficient column which is connected to the encode memory 
register.  

DCT Front 
The DCT front module takes an 8 pixel input row and 8 pixel column and performs a single row by column matrix 
multiplication. The input rows are eight pixels by 9 bits long which produce a single 21-bit output coefficient. The Xilinx 
device block multipliers have a limitation of doing 18-bit by 18-bit multiplications, so the output coefficient is truncated to an 
18-bit number by removing the two MSB and one LSB. This design choice was made because MATLAB tests were run on 
maximum coefficient values. Based on the fixed point math, the two MSB bits could be removed without the loss of any 
information. The LSB removed causes the rounding of the last 1/256 of information which was deemed acceptable to retain 
image quality. 

The DCT front module consists of two submodules: the single matrix multiplication and truncate modules. These modules 
are specified in the above description and therefore not described in individual sections. 

DCT Table 
The DCT table module is a static module that outputs the DCT coefficients for use in the DCT multiply module. The DCT 
coefficients were found using MATLAB and stored using fixed point notation. The coefficients are accessed as the DCT 
matrix (denoted as T) and also the transpose (denoted as T’). This static module is only to provide a common resource for all 
DCT coefficients. The values output do not change, and can be accessed by row and column, which allows any number of 
matrix manipulations to occur. The coefficients in the table are specified in 9-bit signed format in Table 2. 

Table 2 – DCT Coefficient matrix as stored in memory using fixed point notation. 
91 91 91 91 91 91 91 91 

126 106 71 25 -25 -71 -106 -126 
118 49 -49 -118 -118 -49 49 118 
106 -25 -126 -71 71 126 25 -106 

91 -91 -91 91 91 -91 -91 91 
71 -126 25 106 -106 -25 126 -71 
49 -118 118 -49 -49 118 -118 49 
25 -71 106 -126 126 -106 71 -25 

Multiplier Shift Register 
The multiplier shift register is a memory accumulation shift register. The shift register takes an 18-bit coefficient and shifts it 
into memory every clock cycle. The shift register has a eight coefficient depth at which point it fires the done signal 
indicating that the data output is valid. The multiplier shift register is needed because the DCT front module only generates 
one coefficient per clock cycle, but the DCT back module needs a column of input data in order to compute the output 
coefficients. The multiplier shift register accumulates the coefficients and outputs a 144-bit vector or eight 18-bit coefficients 
to the DCT back module. The data is only valid once every eight cycles. 

DCT Back 
The DCT back module takes in a single 144 bit row (eight 18-bit coefficients) and eight 72-bit input DCT vectors (eight 9-bit 
coefficients). The DCT back module computes the second half of the DCT matrix multiply necessary for the matrix 
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transformation. The input row is multiplied in a row by column matrix multiplication eight times in parallel with eight DCT 
vectors. The matrix multiplication is pipelined and has latency of one cycle. The output of the matrix multiplications is a 30 
bit signed number. In order to achieve acceptable compression rates and to eliminate unnecessary resolution in the output 
coefficients, the 30-bit signed number is truncated to a 13-bit signed coefficient. The fixed point math shows that the lowest 
15 bits are less than one integer value and therefore hold very little value. The upper 15 bits are rounded to the nearest 
integer. Using MATLAB simulations, the maximum value for output coefficients is 2062 for an all white 8x8 block. This 
number requires only a 13-bit signed holder to contain the information. The two MSB are therefore removed because they do 
not contain any useful information.  The DCT back module outputs eight 13-bit coefficients to the encode memory register. 

The DCT back module contains two types of subcomponents: the row by column matrix multiplication modules and truncate 
blocks. The functionality of these blocks is described above and is therefore not outlined in a specific section. 

Encode Memory Register 
The encode memory register takes a 103-bit input (eight 13-bit coefficients) and a selector from the encode FSM. The encode 
memory register is a variable bit shift register which also outputs the address and write enable signals to the wireless 
memory. The DCT multiplication produces eight coefficients at a time, but based on the compression scheme only the six top 
corner coefficients should be written into memory. The memory register shifts the number of coefficients specified by the 
output selector from the encode FSM. Each block of the input image is encoded in six coefficients. The encode memory 
register stores the current number of coefficients stored. When this value reaches six, the register writes to memory and resets 
the stored coefficient count. 

The encode memory register has a state counter to iterate the address. Upon reset the address is set to zero and the address 
increments by one every time the memory register fills with six coefficients. The write enable signal is set by the encode 
memory register to write the 78-bit output vector into the wireless memory address corresponding to the block encoded. Each 
encoded block is written into one memory address. When the address reaches the maximum block number of 899, the address 
resets to zero. 

Encode Finite State Machine (FSM) 
The encode FSM controls the data flow in the encoder module. The main function of the FSM is to specific the input values 
to the DCT multiply module and ensuring that input data is valid by addressing the video memory, as well as control output 
flow for the encode memory register and ensure that the valid data is stored and written into the wireless memory. 

The encode FSM specifies all signals when the data is input into the DCT multiply pipeline. Because data flow is 
unpredictable given that the video capture module acquires useful data much slower than the encoder can encode it, the 
encode FSM calculates control values as the data enters the multiplier. Control signals that specify outputs are delayed to 
match the pipeline and therefore are in synchronization with the data as it exits the DCT multiply pipeline. 

The encode FSM has three states but many state variables including line_read, block_read, column_select, and 
inter_row_cnt. These state variables as well as the macro-line input signal from the video capture module and the transmit 
busy signal from the transmitter module are the basis for state change in the encode FSM. A state transition diagram is 
provided in Figure 7 which summarizes the state transitions and the signals set in each state.  
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Figure 7 – State Transition Diagram for Encoder FSM 

The signals set in the ENCODE_BLOCK state are specified in Table 3. 

Table 3 –Outputs for ENCODE_BLOCK state of encode FSM. 

Signal Value 
Inter_row_cnt (inter_row == 7) ? 0 : inter_row + 1 
Column_select_int ((inter_row == 7) && (column_select == 7)) ? 0 : column_select + 1 
Block_read ((inter_row == 6) && (column_select == 7) && 

(block_read == MAX_BLOCKS)) ? 0 : block_read + 1 
Line_read ((inter_row == 6) && (column_select == 7) && 

(block_read == MAX_BLOCKS) && (line_read == MAX_LINES) ? 0 : line_read + 1 
Output_pipe_int ( 3 – inter_row_cnt > 0) ? 3 – inter_row_cnt : 0 

Wireless Block Memory (Encoder Side) 
The wireless block memory module at the transmitter end provides a dual port memory interface between the encoder and 
wireless transmitter blocks.  The memory module stores all the encoded data for a single frame.  The memory module 
contains 900 valid address locations and each address holds a 78-bit value.  The encoder block writes data to the wireless 
memory using the write port and the transmitter block reads data from the memory using the separate read port. 

Wireless Transmitter (Noel Campbell) 
The wireless transmitter block performs the task of sending encoded data from the camera end to the fixed end.  The block 
consists of 4 main modules, the transmitter control unit, transmitter shift register, RS232 sender and the wireless packet 
sender.  Figure 8 shows a diagram of these modules. 
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Figure 8: Transmitter Block Diagram 

Transmitter Control Unit 
The transmitter control unit interacts with the transmitter shift register and RS232 Sender modules to create a major-minor 
FSM architecture.  The shift register and RS232 sender modules are instantiated within the control unit which manages their 
inputs.  The TX control unit operates by incrementing the read_addr port to the wireless block memory and then enabling the 
load signal to the TX shift register module. The TX control unit then enables the send signal input to the RS232 sender 
module and waits for the ready signal from the RS232 sender.  The control unit then enables the shift_once input to the shift 
register and tells the RS232 sender to send another byte.  This process repeats until all 78 bits from the memory address have 
been sent.  The control unit then increments the read_addr signal and repeats the same process.  The read_addr is 
incremented repeatedly until all encoded blocks from the wireless memory have been sent serially by the RS232 Sender.  The 
control unit then issues another load request and the cycle repeats continuously. 

TX Shift Register 
The TX shift register is a simple minor FSM that responds to a load request by loading 78 bits into internal registers.  On 
each shift_once request, the minorFSM outputs 8 bits from the internal registers starting with the lowest 8 bits and ending 
with the highest 8 bits.  It is the responsibility of the higher level major FSM to keep track of the number of shifts in between 
each load. 

RS232 Sender 
The RS232 sender module is a minor FSM that takes as input an 8 bit byte and serially outputs the bits on a single txd output 
line.  The module operates at a 250 kbps baud rate (the maximum baud rate supported by the RS232 driver on the labkit). 
The module samples the 8 bit encoded_byte input when the major FSM issues a send request.  The FSM then proceeds to 
send the input byte according to the RS232 protocol.  The first bit sent is a start bit (a ‘0; bit), followed by the 8 data bits and 
then ending with a stop bit (a ‘1’ bit).  Each bit is held for a period of 108 clock cycles in order to generate a 250 kbps baud 
rate (using the labkit 27 MHz clock). The process of sending a byte ends with a constant 1 (stop signal) on the txd line until 
the next send request is issued and another byte is sent. 

The RS232 Sender uses flow control in order to deal with the difference in data rate between the wireless and serial 
connections.  Flow control is implemented using the rts output and cts input signals.  The RS232 sender issues a ‘0’ on the rts 
line so signal a request to send message to the receiver.  The sender then waits for the receiver to issue a clear-to-send signal 
(a ‘0’) on the cts line which means that the receiver is ready to accept input data. 
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Wireless Packet Sender 
The packet sender module receives serial input data from the RS232 sender module and assembles 11 byte packets that are 
transmitted wirelessly to the wireless packet receiver module.  The code for the packet sender resides on an Atmel 
microcontroller on the Chipcon CC2420DBK development board. The packet sender module is quite different from the other 
Verilog modules in that it is coded in C (a printout of the code is available in the Appendix). 

Receiver-Decoder-Display System 

Wireless Receiver (Noel Campbell) 
The wireless receiver block performs the tasks of receiving wirelessly transmitted encoded data from the wireless transmitter 
block, sending the data serially to the labkit, and then writing the data to block memory so that it can be decoded by the 
decoder block.  Figure 9 shows a block diagram of the wireless receiver block. 
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Figure 9 - Wireless Receiver Block Diagram 

Wireless Packet Receiver 
The packet receiver module is responsible for receiving wireless data packets from the wireless sender module, and sending 
the data serially from the wireless kit to the RS232 receiver module.  The module is coded in C and resides on the 
CC2420DBK development board.  The module uses transmits serial data using a baud rate of 250 kbps.  In order to avoid 
problems caused by the slow wireless bit rate, the packet receiver uses flow control when sending RS232 data to the receiver.  
Flow control is implemented by using the request-to-send rts and clear-to-send cts signals to determine when it is safe to send 
data to the RS232 receiver.  The wireless packet receiver knows it is okay to send data when it detects a low signal (logical 0) 
on its clear-to-send line. 

Receiver Control Unit 
The receiver control unit combines with the RS232 receiver and RX shift register modules to form a major-minor FSM 
architecture for receiving encoded data from the wireless sender and writing it to block memory where it can be accessed and 
decoded by the decoder block.  The control unit controls the rx_ready and write_addr output signals.  The control unit begins 
operation after reset by setting write_addr to memory address zero and then setting rx_ready to high to signal to the RS232 
receiver that it should start receiving serial data.  The control unit issues a wen write enable signal each time the done signal 
is issued by the RX shift register module (indicating that a new 78 bit block of data is ready to be written to memory.  After a 
buffer cycle to ensure a valid write function, the write_addr signal is incremented and the process repeats until write_addr 
equals 899 and the address must be set back to zero. 

RS232 Receiver 
The RS232 receiver module is responsible for receiving serial data from the wireless packet receiver and sending out 8-bit 
bytes to the RX shift register.  The module operates by first checking that the value of the rx_ready input signal is high, 
signaling that it is okay to receive and send data to the RX shift register.  The module operates at a baud rate of 250 kbps and 
functions by first checking for a start bit (logical 0) at each positive edge of the clock. When the beginning of a start bit is 
detected, the FSM counts to a value of 53 (half the baud rate count) and samples the signal again to ensure that the bit really 
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is a start bit.  The module then repeatedly counts up to 107 (the count value that creates a baud rate of 250 kbps) and samples 
the input signal on the rxd line at the end of each count.  This counting repeats until 8 data bits are detected. The FSM then 
transitions to a “receive stop bit” state for the 10th bit and waits for the next start bit. During the “stop bit state,” the module 
also asserts the data_ready output signal which lets the RX shift register know that it is okay to shift in another 8 bit byte. 

RX Shift Register 
The RX shift register module is responsible for receiving the 8-bit byte inputs from the RS232 Receiver module and shifting 
out 78 bits at time each time the internal buffer fills. The module shifts 8 bits into internal registers each time the RS232 
receiver module asserts the data_ready line.  When the shift register fills with 78 bits, it asserts the done output signal which 
causes the RX control unit to write to the wireless block memory. 

Wireless Block Memory (Decoder Side) 
The wireless block memory module at the receiver end provides a dual port memory interface between the wireless receiver 
and decoder blocks.  Similar to the wireless block memory on the encoder/transmitter side, the memory module stores all the 
encoded data for a single frame.  The memory module contains 900 valid address locations and each address holds a 78-bit 
value.  The receiver block writes data to the wireless memory using the write port and the decoder block reads data from the 
memory using the separate read port. 

Decoder (VIVEK) 
The decoder module takes in a set of DCT coefficients from the wireless memory and performs a proprietary Inverse Discrete 
Cosine Transform (IDCT) based decompression algorithm. The equation for the IDCT is specified in Equation 3 and 
Equation 4. This is based on the JPEG standard of image compression and extrapolates the lower frequency image 
information from a compact set of coefficients. The decoder converts six 13-bit signed coefficients into a 512-bit 8x8 pixel 
block. The decoder module stores the output data in the video memory. 

The decoder is very similar to the encoder, and in fact shares many of the same modules. For the modules that are the same, 
references are made to the previous modules for details on the implementation. The decoder is a 4-stage pipeline with valid 
data appearing every eight clock cycles. The decoder connects to the wireless transmitter through a decoder busy signal and 
the transmitter sends it an address active signal. These signals prevent the decoder from decoding blocks which have not been 
updated with fresh data. The decode module outputs many signals to the wireless memory and to the video memory in order 
to control data flow. 

Equation 3 – Matrix notation of IDCT using 8x8 matrices. 

DCT = T ′ * IMG *T 
Equation 4 – Two dimensional Inverse Discrete Cosine Transform algorithm. 

The decode module has multiple subcomponents including DCT multiply and the decode FSM. The block diagram in Figure 
10 shows the interconnection of the decoder’s submodules. 
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Figure 10 – Block diagram of Decoder module. 

DCT Multiply Decode  
The decoder DCT multiply is not significantly different than the DCT multiply in the encoder. The one critical difference is 
the different outputs used to multiply against the coefficients in each stage. In the encoding stage, each 8x8 pixel block was 
multiplied by the DCT coefficient matrix (denoted T) and then multiplied by the transpose matrix (denoted T’). In this stage, 
the reserve happens. The set of image post-DCT coefficients are multiplied by T’ and then T. This creates the IDCT and 
allows the image to be decoded. 

DCT Front Decode  
The DCT front module is not significantly different than the DCT front in the encoder. The only difference is the bit widths 
coming into the first stage multiply. The coefficients are 13-bit signed numbers, and thus require different multiply modules 
to accommodate the larger input width. However, the output is still truncated to 18-bit signed coefficients, and the data flow 
path is identical. 

DCT Table 
This module is unchanged from the encoder. Please refer to the DCT table module in the encoder for details on how this 
module is implemented. 

Multiplier Shift Register 
This module is unchanged from the encoder. Please refer to the multiplier shift register module in the encoder for details on 
how this module is implemented. 

DCT Back Decode  
This module is unchanged from the encoder. Please refer to the DCT back module in the encoder for details on how this 
module is implemented. The only change is that the DCT back decode does not output to a memory register but outputs 
directly to the video memory. 
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Decoder FSM 
The decoder FSM is implemented in a very similar manner to the encoder FSM. The state transitions and signals are almost 
identical, except that the decoder FSM is controlling data flow from the wireless memory to the video memory and the 
encoder is controlling the opposite. A state transition diagram is included in Figure 11. 

Figure 11 – State Transition Diagram for Decode FSM. 

Video Memory (Decoder) 
This module is very similar to the memory architecture used on the encoder side but instead of eight 64X900 dual-port block 
memories, it uses eight 8X7200 dual-port block memories.  Each block memory has one dedicated write port for the decoder 
module, and one dedicated read port for the video display module. The reason why the width and depth of these memories 
changed is because the decoder decodes 8 pixels at a time, all of which can be written into memory immediately.  There is no 
reason to store them in a shift register even though the Read 64 module requires 64 bits of information.  The block memory 
on the labkit allows different port widths so the read port for the video display is 64 bits. 

The video memory module is given input data, write enable, and write address signals from the decoder module. These inputs 
are used to write input data into memory. The decoder block gives the video memory a macro-line, block, and inter-block 
row which are converted into a memory address.  

Each memory address holds 1 pixels of grayscale information. Each memory holds 240 sequential pixels from the video 
capture module in 240 sequential memory addresses. Each 240 pixel line of video data is loaded in each memory 
sequentially, with the first line being written to the first memory, the second to the second memory and so forth. The ninth 
line of memory is then written again in the next 240 memory addresses of the first memory.  

Video Display (RAYMOND) 
This module has fewer sub-modules than the Video Capture module.  While it also has a VGA Controller, Display, and 
Delay module underneath, the main difference is that it has a Read 64 module which is responsible for reading from the 
Video Memory on the decoder side and passing the grayscale data to the Display module for visual display.  
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Figure 12 – Block diagram of the Video Display Module. 

Read 64 
The Read 64 module reads from the video memory on the decoder side.  It is similar to the Store 64 module in that it has two 
internal counters read_counter and read_counter 2.  These counters are used to know when the 64 bit shift register is empty 
and when the reader has reached the end of a line.  Every clock cycle, the Read 64 module outputs 24 bits of RGB data that 
consists of a Y value repeated three times (RGB = {Y, Y, Y}) so no conversion is required here.  Two shift registers are 
needed because when one shift register is being unloaded, the second is filled with the next 8 pixels worth of data.  So, when 
one shift register is half way unloaded, the second shift register is loaded with the next address’s data.  This alternating 
pattern allows a continuous stream of data to be displayed on the screen.  The memory architecture for the Video Memory on 
the decoder side is similar to the memory on the encoder side and is further described in the Video Memory (Decoder) 
module. 
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Testing and Debugging 

Video Capture/Display Modules 
In order to test the system, I created several test benches for each module to verify its functionality.  When all the modules 
were complete, both Video Capture and Video Display, I created a top level module and a corresponding top level testbench 
to make sure all the signals were transitioning as I expected.  The top level testbench waveform is given below. 

Figure 13 – Video Capture/Display Testbench 

Here, I simulated camera data by beginning lines with the FF 00 00 XY sequence every 700 cycles (an approximate length of 
a line coming from the camera) and then incrementing the data by a fixed amount for the remaining clock cycles.  Then I 
checked to see that the data_valid signal was transitioning as I expected, mainly that it transitions every other clock period. 
Then I checked to see that addrb, the address that controls where the color data is read from on the encoder side, increments 
every time the VGA pixel counter increments. After that, I checked to see that the RGB values were being converted from Y, 
Cr, Cb values.  I was unable to verify the values they were being converted to except with a physical test, however this 
waveform shows that the R, G and B values are held for two clock cycles every other time its value changes.  This makes 
sense because the camera outputs only one luminance (Y) and one chrominance value (Cr or Cb) per pixel.  Looking at the 
equations for converting Y, Cr, Cb to RGB, this makes sense.  Finally, I looked at the Y values coming out of my top level 
test bench to see if my reader was working properly.  This was a test to verify that my reader was able to output sequential Y 
values which corresponded to the Y values that were written into memory.  Here, I have verified this result because the Y 
value increments the same amount every clock cycle.   

The entire traffic light controller was tested and debugged in a systematic method involving testbenching and FPGA 
simulation. Each module was tested using a test bench and writing comprehensive tests for all possible input configurations. 
Test benches were used to test behavioral and also post-place and route models of the design. At times, these simulations did 
not agree but an effort was made to have every module pass every test bench in both modes. Details of important modules 
and the testing are represented below. 

Encoder 
Every module in the encoder system was test benched and tested thoroughly in ModelSim. These comprehensive test benches 
are in the appendix and can be reviewed for completeness. The test results for all the submodules were successful, but are too 
numerous to include in this report. The top level testing and testing strategy is summarized below for the encoder module. 

The simulation results shown in Figure _ show the encoder system functioning correctly with sample data input. The 
coefficients and the write enable indicate that the correct coefficients are being generated and they are synchronized. The 
block being encoded is the 8x8 matrix of all 255 (all white) values. Further tests included random matrices, with the 
corresponding verification with MATLAB outputs. 
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Figure 14 – Video Encoder Testbench ModelSim waveform outputs. 

The test shows that the 2062 coefficient in the 6th coefficient position and zeros in all lower coefficient positions is 
synchronized with the written enable. The write address is also incrementing in the cycle after the write, which shows the 
system is moving forward into the new write cycle. The encode busy signal is high for the duration of the encoding. 

Further testing on the encoder included connecting the encoder and the wireless transmission module, and placing a known 
COE file in the video memory and using the logic analyzer to verify that the outputs were being sent correctly. This testing 
was physical testing and was very useful in debugging and was proven correct in the final testing phases. 

Decoder 
Every module in the decoder system was test benched and tested thoroughly in ModelSim. These comprehensive test benches are in the 
appendix and can be reviewed for completeness. The test results for all the submodules were successful, but are too numerous to include in 
this report. The top level testing and testing strategy is summarized below for the encoder module. 

The simulation results shown in Figure _ show the decoder system functioning correctly with sample data input. The coefficients and the 
write enable indicate that the correct coefficients are being generated and they are synchronized. The block being encoded is the 8x8 matrix 
of all 2062 which is the encoded equivalent of an all white block.. Further tests included random encoded matrices, with the corresponding 
verification with MATLAB outputs. 
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Figure 15 – Decoder Testbench ModelSim waveform output. 

The test shows that the column output from the decoder is all 255 data, indicating that the coefficients were decoded correctly 
and recreated the all white block. The column_select_write is also incrementing in the cycle after the write, which shows the 
system is moving forward into the new write cycle. The decode busy signal is high for the duration of the encoding. 

Further testing on the decoder included connecting the decoder and the video display unit, and placing a known COE file in 
the wireless memory. The COE file was for coefficients of black and white lines on the display. This testing helped to verify 
the encoding and video display subsystems, and also proved both systems in the final iterations.  

Wireless Transmitter/Receiver Modules 
Testing of the wireless modules was conducted by creating separate ModelSim testbenches for each of the modules (the 
testbench for each module is included in the appendix).  Because of the difficulty of simulating some of the input data such as 
the serial input signals associated with RS232, further testing was necessary to validate the communication between the 
RS232 modules and the wireless kit.  This was done by connecting the labkit to the wireless sender module using a serial was 
created that looped through the ASCII alphabet to see that the data path was functioning correctly.  Further testing was 
conducted by connecting the receiver wireless kit to the labkit and then using a Verilog module that would send the hex value 
on the switches of the sender labkit and display the ASCII text on the alphanumeric display of the receiver labkit.  Both of 
these tests functioned correctly and proved that communication was functioning properly. 

When all of the modules (video capture, encoder, transmitter, receiver, decoder, display) were connected in the top level 
labkit file, debugging was done using the logic analyzers. The screenshot in Figure 3 displays the results of this debugging. 
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Figure 16: Logic analyzer screenshot verifying overall system data flow 

The screenshot in Figure 3 shows the bytes of data (DATA) being received by the RS232 receiver module and the memory 
addresses (write_address) to which these values are being written.  It should be noted that write actions are not occurring for 
every data byte because the wireless memory architecture stores 78-bit values which contain the encoded data for an entire 
8x8 pixel block. 

Physical Testing 
The major component of the systems integration testing involved a series of physical tests using stubbed labkit 
implementations and known COE files in memory. These tests were performed to quickly debug only the broken parts of the 
system and to allow quick synthesis of only the incorrect portions of the overall project. Our testing methodology was to stub 
out the video capture and video encoder, and place a known COE file in the wireless memory on the encoder side. Leaving 
only the wireless transmitter in the labkit decreased the synthesis and generate programming file time by over 75%. Using 
this implementation and a known implementation on the wireless receiver side, the logic analyzer was used to debug 
synchronization signals in the wireless transmitter. 

Using this testing methodology, we were able to see exact synchronization in the data packets received, and were able to 
narrow down the exact errors in the matter of a few iterations. Physical testing also included testing and viewing known COE 
file images, we were able to confirm the proper functionality of various subsystems of our final project. 

Conclusion 

The objective of this final project was to design and implement a complex digital system combining video, digital encoding, 
and wireless transmission of data. The analysis presented in the previous sections shows a fully functional wireless video 
surveillance system, along with in-depth analysis of the modular structure of the design. A comprehensive testing 
methodology was proposed and executed, which further validated the functionality of the system. 

This final project taught integration of complex digital systems and the digital interface between many diverse analog and 
digital components. For designing even more complex systems, this final project demonstrates the challenges that are faced 
in integrating systems, even with fully functional separate parts. Moreover, the final project allows us to test our hypothesis 
that a high resolution image could be transmitted over wireless bandwidth to create a functional and useable surveillance 
system. Future improvements of this project might include developing a more robust wireless communication protocol, 
implementing full-color transmission, and potentially increasing the number of input video cameras. 
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