# 2-D Mapping with Sonar

Leon Fay Miranda Ha Vinith Misra Not Chris

### **Basic Sonar**





- Ultrasound cannot be heard by people
- Small wavelength => good for short
- Time of flight can be used to estimate





### **Basic Mapping**



 Rotate receiver/ transmitter to measure distance at every angle

 Slow update rates because of many distance measurements

### **Phase Array**







 Use multiple receivers, measure different angles using phase relationships

- No moving parts => more reliable
- Faster update rate

### Applications





 Draw a top view map of environment

 Security system that detects changes in surroundings



# **Simplified Block Diagram**



#### Datagathering Process Interface

### **Transmit/Receive**





### **Transmit/Receive**



Transmit a single
 40-kHz sine wave
 pulse (generated
 from stored values
 played through DAC)

Multiple receivers

 Enable signals from Control Module for transmitting and receiving





### **Data-gathering**







### **Data-gathering**



 Samples data from receivers at intervals dictated by Control Module

 Data stored in one of two RAMs

 Simultaneous storage and processing of data— "double buffering"





### **Control/Process**



#### Transmit/ Data-Receive gathering





 Control Module gives Processing Module an angle;
 Processing Module gives back distance at that angle

**Display**/

Interface

 Post-Processor gets angle/distance pairs ready for display and tells Control Module if more data is needed

### Transmit/Data-<br/>gatheringControl/<br/>Process

### **Display/Interface**



### **Display/Interface**





- Display Module gives VGA controller appropriate RGB signals
- Main purpose is to draw a 2-D, colorcoded map of the environment
- RS232 Module is for debugging
- User can choose what is displayed



# Sines, Chirps, and Pulses



What kind of signal to transmit?

Steady Sine Wave

 Chirp (linearly changing frequency)

 Short pulsed sine wave



# Sines, Chirps, and Pulses



What kind of signal to transmit?

- Steady Sine Wave
- Chirp (linearly changing frequency)
- Short pulsed sine wave





# Game Plan







# Game Plan



 For each reflection, different receivers have similar attenuation, but slight phase shifts.

Can expand as 2 delays:

Object to receiver1 - DISTANCE

Receiver 1 to
 Receiver N DIRECTION



# **The Process**



 Find where a certain phase relation is most likely to have occurred (similar to matched filtering)

- 2. Record the delay to this region of the signal
- 3. Distance = (half
  delay to max) \*
  (speed of sound)



# **The Process**



After post-processing, matches almost perfectly in simulation.