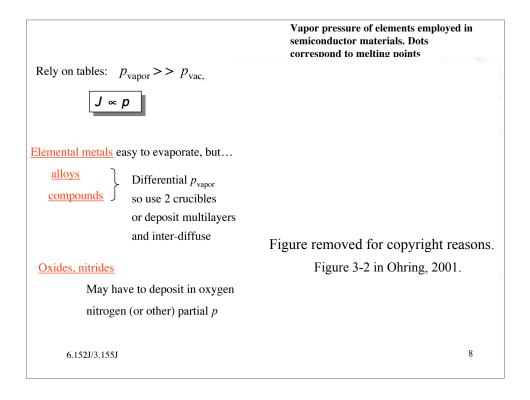
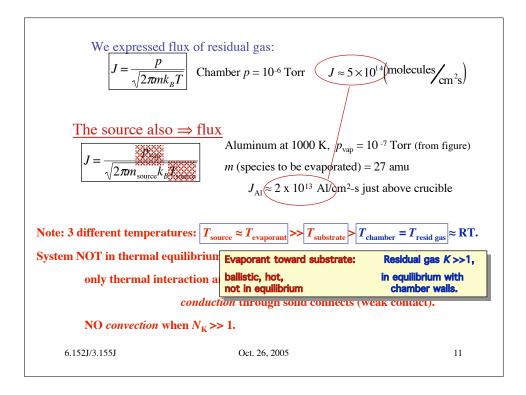
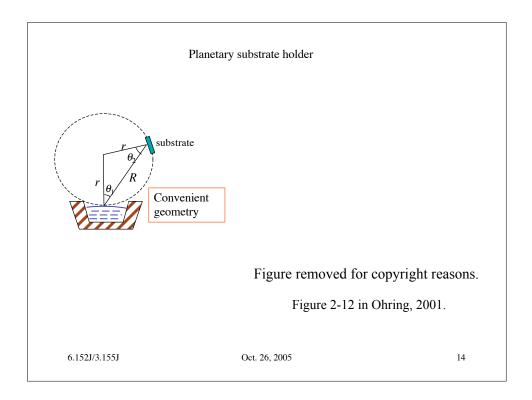
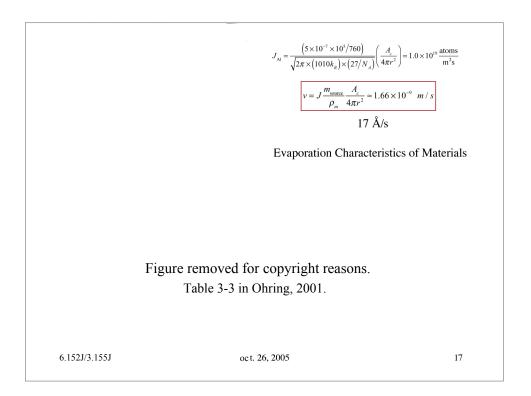

PHYSICAL VAPOR DEPOSITION (PVD) PVD II: Evaporation		
• We saw CVD	Gas phase reactants: $p_{\rm g} \approx 1$ mTorr to 1 atm. Good step coverage, $T > 350$ K	
♦ We saw sputtering	Noble (+ reactive gas) $p \approx 10$ mTorr; ionized particles High deposition rate, reasonable step coverage Extensively used in electrical, optical, magnetic devices.	
Now see <u>evaporation</u> :	Source material heated, $p_{eq,vap.} = \sim 10^{-3}$ Torr, $p_g < 10^{-6}$ Torr Generally no chemical reaction (except in "reactive deposition), $\lambda = 10$'s of meters, Knudsen number $N_K >> 1$ Poor step coverage, source alloy fractionation: Δp_{vapor} Historical (optical, electrical) Ch. 12 is more extensive than Plummer on evaporation	
6.152J/3.155J	Oct. 26, 2005 2	

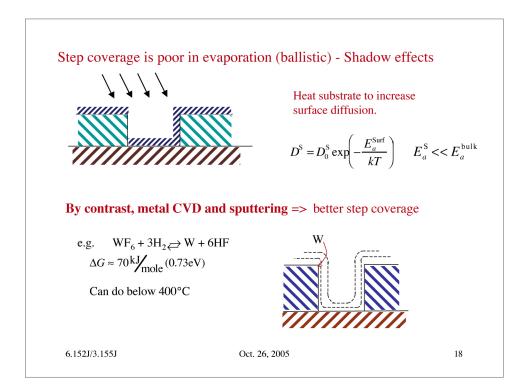

	Standard vacuum chambers	$\Sigma p_i \approx 10^{-6} \text{ Torr } (1.3 \times 10^{-4} \text{ N / m}^2)$ $\left(\begin{array}{c} \text{Mostly H}_2\text{O, hydrocarbons, N}_2 \text{, He} \\ \text{by residual gas analysis (RGA = mass spectrum)} \end{array} \right)$	c.)
Figure removed for co Figure 2-12 in Ohring, M. <i>The</i> <i>Thin Films</i> . 2nd ed. Burlington 2001. ISBN: 0125249756.	e Materials Science	of	isons.
6.152J/3.155J	O	ot. 26, 2005 3	

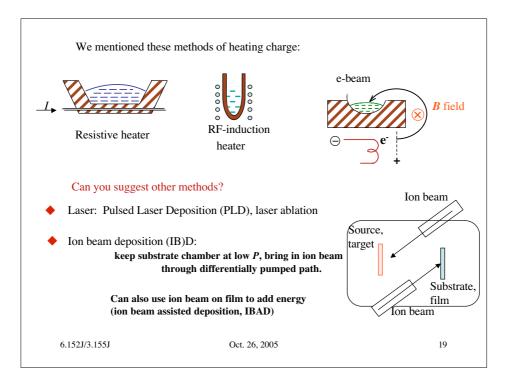


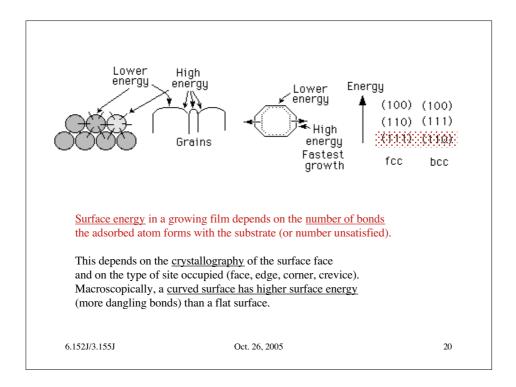


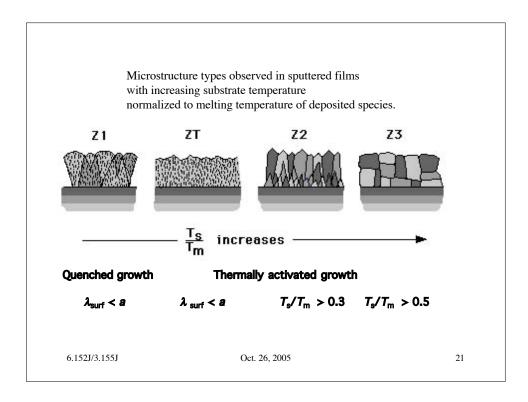

	Figure removed for copyright reasons.	
	Table 3-1 in Ohring, 2001.	
	Table 5-1 in Onring, 2001.	
6.152J/3.155J	Oct. 26, 2005	9
	,	

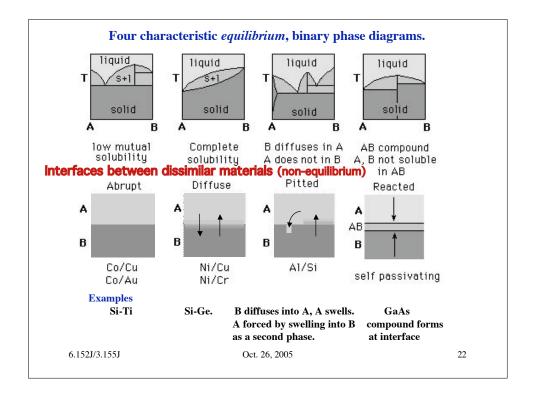


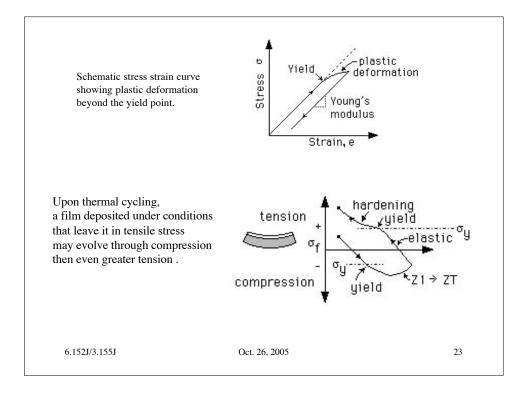

Residual gas flux on substrate: But at 1000 K:	$J \approx 5 \times 10^{14} (\text{molecules/cm}^2 \text{s})$ $J_{\text{AI}} \approx 2 \times 10^{13} \text{ Al/cm}^2 \text{-s just above crucible}$	e
heat Al to $T > 800 \text{ C}$,		
use lower bas	se pressure in chamber,	
but that's not all		
Net flux from crucible ~ JA_c (unit	ts: # / 1)	
Mass flow out of crucible ~ $J A_c$ r	<i>m</i> (mass / <i>t</i>)	
6.152J/3.155J O	Det. 26, 2005	12






Exercise
Deposit Al (2.7 g/cm³) at
$$r = 40$$
 cm from 5 cm diam. crucible
heated to 950 K (cf $T_{melh} \approx 950$ K) $p_{Al vap} \approx 10^{.8}$ Torr,
 $p_{H_2,0} = 10^{-7}$ Torr $A_c = \pi \left(\frac{5}{2}\right)^2$
Compare arrival rate of Al and H_2O at substrate...and calculate film growth
rate
 $J_{H_2,0} = \frac{(10^{-7}/760) \times 10^5}{\sqrt{2\pi \times (0.025 \text{ eV} \times e) \times (18/N_A)}} = 1.5 \times 10^{19} \frac{\text{molecules}}{\text{m}^2\text{s}}$
 $J_{A_1} = \frac{(10^{-8} \times 10^5/760)}{\sqrt{2\pi \times (950k_B) \times (27/N_A)}} \left(\frac{A_c}{4\pi r^2}\right) = 6.7 \times 10^{14} \frac{\text{atoms}}{\text{m}^2\text{s}}$
 $\nu = J \frac{m_{\text{source}}}{\rho_m} \frac{A_c}{4\pi r^2} \approx 4.35 \times 10^{-13} \text{ m/s}$ slow!
Lave shutter closed so initial Al deposition can getter O₂ and H₂O.
Hard to achieve higher deposition rate; use better vac., or sputter deposition.





Summary: Evaporation			
• We saw CVD	Gas phase reactants: $p_g \approx 1$ mTorr to 1 atm. Good step coverage, $T > 350$ K		
◆ We saw sputtering	Noble gas ions & e^{-} (+ reactive gas) $p \approx 10$ mTorr High rate, reasonable step coverage Extensively used in electrical, optical, magnetic devices.		
Now see evaporation:	Source material heated, $p_{\rm eq.vap.} = \sim 10^{-3}$ Torr, $p_{\rm g} < 10^{-6}$ Torr Generally no chemical reaction (except in "reactive" deposition), $\lambda = 10$'s of meters, Knudsen number $N_{\rm K} >> 1$		
	Poor step coverage; alloy fractionation: Δp_{vapor} Historical (optical, electrical)		
6.152J/3.155J	Oct. 26, 2005 24		