Earlier in term you were urged:

when addressing a new problem, topic, technical field...
ask all the quantitative questions you can, e.g.
what are the energies, forces, length \& time scales involved...
use your familiar equations.
This gives you context, limits and unimagined possibilities ...
Richard Rodriquez (American poet, essayist, cultural commentator), in his recent book "Brown; the last discovery of America"
"...it is the reader alone who decides a book's universality.
....It is the reader's life that opens a book.
I [as the author] am dead.
Only a reader can testify to the ability of literature to open;..."
This is about hearing something and taking it farther than the source could imagine, about being an active reader, an active listener, an active learner.
You determine the value in the material you are exposed to,
by the questions you ask,
the experiences and insights you bring.
Only active learning will make you the creators and inventors of tomorrow.

Oct. 26, 2005
1

PHYSICAL VAPOR DEPOSITION (PVD)
 PVD II: Evaporation

- We saw CVD Gas phase reactants: $p_{\mathrm{g}} \approx 1 \mathrm{mTorr}$ to 1 atm .

Good step coverage, $\boldsymbol{T}>350 \mathrm{~K}$

- We saw sputtering

Noble (+ reactive gas) $p \approx 10 \mathrm{mTorr}$; ionized particles
High deposition rate, reasonable step coverage
Extensively used in electrical, optical, magnetic devices.

Now see evaporation: Source material heated, $p_{\text {eq.vap. }}=\sim 10^{-3}$ Torr, $p_{\mathrm{g}}<10^{-6}$ Torr
Generally no chemical reaction (except in "reactive deposition),
$\lambda=10$'s of meters, Knudsen number $N_{\mathrm{K}} \gg 1$
Poor step coverage, source alloy fractionation: $\Delta p_{\text {vapor }}$
Historical (optical, electrical)
Campbell, Ch. 12 is more extensive than Plummer on evaporation

Figure removed for copyright reasons.

Figure 2-12 in Ohring, M. The Materials Science of
Thin Films. 2nd ed. Burlington, MA: Academic Press, 2001. ISBN: 0125249756.

Figure removed for copyright reasons.
Figure 2-8 in Ohring, 2001.

Atomic flux on surface due to residual gas
$J\left(\frac{\text { atoms }}{\text { area } \cdot \mathrm{t}}\right)=\frac{n}{2} \bar{v}_{x}=\frac{p}{2 k_{B} T} \sqrt{\frac{2 k_{B} T}{\pi m}}=\frac{p}{\sqrt{2 \pi m k_{B} T}}=J$
Given 10^{-6} Torr of water vapor @ room temp, find flux
$p=10^{-6} \mathrm{Torr} \times \frac{1 \mathrm{~atm}}{760 \mathrm{~T}} \times \frac{10^{5} P_{a}}{\mathrm{~atm}}, \quad k_{B} T(R T)=0.025 \mathrm{eV}=4 \times 10^{-21} \mathrm{~J}$
$p=1.3 \times 10^{-4} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \quad m_{\mathrm{H}_{2} \mathrm{O}}=\frac{18}{N_{A}}=3 \times 10^{-26} \mathrm{~kg}$
$J=4.8 \times 10^{14}\left(\frac{\text { atoms } / \text { molecules }}{\mathrm{cm}^{2} \mathrm{sec}}\right)$

What is atomic density in 1 monolayer (ML) of Si ?
$N_{\mathrm{Si}}=5 \times 10^{22} \mathrm{~cm}^{-3}=>1.3 \times 10^{15} \mathrm{~cm}^{-2}$.
So at 10^{-6} Torr, 1 ML of residual gas hits surface every 3 seconds!
Epitaxy requires slow deposition, high surface mobility,
you must keep pressure low to maintain pure film
So we have a good idea of the chamber...
6.152J/3.155J

Oct. 26, 2005
6

Vapor pressure of elements employed in semiconductor materials. Dots correspond to melting points

Rely on tables: $p_{\text {vapor }} \gg p_{\text {vac, }}$

$$
J \propto p
$$

Elemental metals easy to evaporate, but...

$$
\left.\begin{array}{ll}
\underline{\text { alloys }} \\
\underline{\text { compounds }}
\end{array}\right\} \begin{aligned}
& \text { Differential } p_{\text {vapor }} \\
& \text { so use } 2 \text { crucibles } \\
& \\
& \text { or deposit multilayers } \\
& \\
& \text { and inter-diffuse }
\end{aligned}
$$

Figure removed for copyright reasons.

Oxides, nitrides

Figure 3-2 in Ohring, 2001.
May have to deposit in oxygen
nitrogen (or other) partial p

Figure removed for copyright reasons.
Table 3-1 in Ohring, 2001.

Figure removed for copyright reasons.

Graph of Vapor Pressures for the Elements. Please see:
http://www.veeco.com/learning/learning_vaporelements.asp

What would you do if you wanted to deposit a Ta or W film?
$6.152 \mathrm{~J} / 3.155 \mathrm{~J} \quad$ Oct. $26,2005 \quad 10$

Residual gas flux on substrate: $\quad J \approx 5 \times 10^{14}\left(\right.$ molecules $\left./ \mathrm{cm}^{2} \mathrm{~s}\right)$
But at $1000 \mathrm{~K}: \quad J_{\mathrm{Al}} \approx 2 \times 10^{13} \mathrm{Al} / \mathrm{cm}^{2}$-s just above crucible
\ldots. heat Al to $T>800 \mathrm{C}$,
use lower base pressure in chamber,
but that's not all...

Net flux from crucible $\sim J A_{\mathrm{c}}$ (units: \# $/ t$)

Mass flow out of crucible $\sim J A_{\mathrm{c}} m($ mass $/ t)$

How much evaporant strikes substrate? At 10^{-6} Torr, trajectories are uninterrupted. While a point source deposits uniformly on a sphere about it, a planar source does not:

Convenient geometry

$\cos \theta_{1}=\cos \theta_{2}=\frac{R}{2 r}$

Deposition rate $=J m \frac{A_{c}}{4 \pi r^{2}}\left(\frac{m}{\text { area } \cdot t}\right)$ or $\quad J \frac{A_{c}}{4 \pi r^{2}}\left(\frac{\#}{\text { area } \cdot t}\right)$
Film growth rate $=\operatorname{Jm} \frac{A_{c}}{4 \pi r^{2}} \frac{1}{\rho_{f}}\left(\frac{\text { thick }}{t}\right)$

Planetary substrate holder

Figure removed for copyright reasons.
Figure 2-12 in Ohring, 2001.

Film growth rate $=J m \frac{A_{c}}{4 \pi r^{2}} \frac{1}{\rho_{f}}\left(\frac{\text { thick }}{t}\right)$
for evaporation

$$
v=\frac{p_{\text {vap }}}{\sqrt{2 \pi m_{\text {source }} k_{B} T_{\text {source }}}} \frac{m}{\rho_{m}} \frac{A_{c}}{4 \pi r^{2}}=\frac{p_{\text {vap }}}{\rho_{m}} \frac{A_{c}}{4 \pi r^{2}} \sqrt{\frac{m_{\text {source }}}{2 \pi k_{B} T_{\text {source }}}}
$$

Cf. CVD

$$
v_{f}=\frac{C_{g} / N}{\frac{1}{n_{g}}+\frac{1}{k}}
$$

Oxide

In PVD growth, strike balance

$$
R=\frac{\text { deposition rate }}{\text { Surface diffusion rate }}
$$

$$
\begin{array}{ll}
R>1 & \text { stochastic growth, rough } \\
R<1 & \text { layer by layer, smooth (can heat substrate) }
\end{array}
$$

6.152J/3.155J

Oct. 26, 2005
15

Exercise
Deposit $\mathrm{Al}\left(2.7 \mathrm{~g} / \mathrm{cm}^{3}\right)$ at $r=40 \mathrm{~cm}$ from 5 cm diam. crucible
heated to $950 \mathrm{~K}\left(\right.$ cf $\left.T_{\text {melt }} \approx 950 \mathrm{~K}\right) \quad p_{\text {Al vap }} \approx 10^{-8}$ Torr,

$$
\begin{array}{ll}
p_{\mathrm{H}_{2} \mathrm{O}}=10^{-7} \text { Torr } \\
\text { (this is not good vac.) }
\end{array} \quad A_{c}=\pi\left(\frac{5}{2}\right)^{2}
$$

Compare arrival rate of Al and $\mathrm{H}_{2} \mathrm{O}$ at substrate...and calculate film growth

$$
\begin{aligned}
& J_{\mathrm{H}_{2} \mathrm{O}}^{\text {rate }}=\frac{\left(10^{-7} / 760\right) \times 10^{5}}{\sqrt{2 \pi \times(0.025 \mathrm{eV} \times e) \times\left(18 / N_{A}\right)}}=1.5 \times 10^{19} \frac{\text { molecules }}{\mathrm{m}^{2} \mathrm{~s}} \\
& J_{\mathrm{Al}}=\frac{\left(10^{-8} \times 10^{5} / 760\right)}{\sqrt{2 \pi \times\left(950 k_{B}\right) \times\left(27 / N_{A}\right)}}\left(\frac{A_{c}}{4 \pi r^{2}}\right)=6.7 \times 10^{14} \frac{\text { atoms }}{\mathrm{m}^{2} \mathrm{~s}} \quad \begin{array}{l}
\text { Check my math: } \\
\text { Avogadro's number, } \\
\begin{array}{l}
\mathbf{N}_{\mathrm{A}}=6.02 \times 1 \mathbf{1 0}^{23} \\
\text { (atoms/mole) } \\
\text { but in MKS }
\end{array} \\
\\
v=J \frac{m_{\text {source }}}{\rho_{m}} \frac{A_{c}}{4 \pi r^{2}} \approx 4.35 \times 10^{-13} \mathrm{~m} / \mathrm{s} \quad \text { slow! } \quad \begin{array}{l}
\mathbf{N}_{\mathrm{A}}=\mathbf{6 . 0 2} \times 10^{26} \\
\text { (atoms/kg-mole) }
\end{array}
\end{array}
\end{aligned}
$$

Leave shutter closed so initial Al deposition can getter O_{2} and $\mathrm{H}_{2} \mathrm{O}$.
Hard to achieve higher deposition rate; use better vac., or sputter deposition.

$$
\begin{aligned}
& J_{N}=\frac{\left(5 \times 10^{-7} \times 10^{9} / 760\right)}{\sqrt{2 \pi \times\left(1010_{s}\right) \times\left(27 / N_{A}\right)}}\left(\frac{4}{4 \pi r^{\circ}}\right)=1.0 \times 10^{9} \frac{\text { atoms }}{\mathrm{m}^{2} \mathrm{~s}} \\
& v=J \frac{m_{\text {mame }}}{\rho_{m}} \frac{A_{c}}{4 \pi r^{2}} \approx 1.66 \times 10^{-9} \mathrm{~m} / \mathrm{s} \\
& 17 \AA \text { A/s }
\end{aligned}
$$

Evaporation Characteristics of Materials

Figure removed for copyright reasons.
Table 3-3 in Ohring, 2001.

Step coverage is poor in evaporation (ballistic) - Shadow effects

Heat substrate to increase surface diffusion.

$$
D^{\mathrm{S}}=D_{0}^{\mathrm{S}} \exp \left(-\frac{E_{a}^{\text {suf }}}{k T}\right) \quad E_{a}^{\mathrm{S}} \ll E_{a}^{\text {bulk }}
$$

By contrast, metal CVD and sputtering => better step coverage

$$
\begin{aligned}
& \text { e.g. } \quad \mathrm{WF}_{6}+3 \mathrm{H}_{2} \rightleftarrows \mathrm{~W}+6 \mathrm{HF} \\
& \Delta G \approx 70 \mathrm{~kJ} / \mathrm{mole}^{(0.73 \mathrm{eV})}
\end{aligned}
$$

Can do below $400^{\circ} \mathrm{C}$

We mentioned these methods of heating charge:

Can you suggest other methods?

- Laser: Pulsed Laser Deposition (PLD), laser ablation
- Ion beam deposition (IB)D:
keep substrate chamber at low P, bring in ion beam through differentially pumped path.

Can also use ion beam on film to add energy (ion beam assisted deposition, IBAD)

Surface energy in a growing film depends on the number of bonds
the adsorbed atom forms with the substrate (or number unsatisfied).

This depends on the crystallography of the surface face and on the type of site occupied (face, edge, corner, crevice).
Macroscopically, a curved surface has higher surface energy (more dangling bonds) than a flat surface.

Schematic stress strain curve showing plastic deformation beyond the yield point.

Upon thermal cycling, a film deposited under conditions that leave it in tensile stress may evolve through compression then even greater tension .

Summary: Evaporation

- We saw CVD Gas phase reactants: $p_{\mathrm{g}} \approx 1 \mathrm{mTorr}$ to 1 atm .

Good step coverage, $T>350 \mathrm{~K}$

- We saw sputtering

Noble gas ions \& e^{-}(+ reactive gas) $p \approx 10$ mTorr
High rate, reasonable step coverage
Extensively used in electrical, optical, magnetic devices.

Now see evaporation: Source material heated, $p_{\text {eq.vap. }}=\sim 10^{-3}$ Torr, $p_{\mathrm{g}}<10^{-6}$ Torr
Generally no chemical reaction (except in "reactive" deposition),
$\lambda=10$'s of meters, Knudsen number $N_{\mathrm{K}} \gg 1$

Poor step coverage; alloy fractionation: $\Delta p_{\text {vapor }}$
Historical (optical, electrical)

