

object models: math structures

Daniel Jackson

basic structures

set

, an unordered, duplicate-free collection

tuple

, an ordered sequence
pair
> a tuple of length two
relation
> a set of pairs
graph
, a set (nodes) + a relation (edges)

examples

which of these is a set? a tuple? a relation?
\{1\}
\{"hello"\}
$(1,2)$
(1)
$\{(1)\}$
$\{(1,1),(2,4)\}$
\{\}
()
$\{()\}$
$\{(\},\{ \})\}$

first-order structures

a structure is first-order if
, sets and relations aren't elements
which of these is first-order?
\{1\}
$\{(1,2)\}$
\{ \{\}\}
$\{()\}$
$\{(1,\{1\})\}$

reduction to first-order

a higher-order structure
, teams $=\left\{\left\{{ }^{\prime \prime}\right.\right.$ alice", "bob"\}, \{"carol", "dave" $\left.\}\right\}$
a first-order structure
, teams $=\{\mathrm{t} 1, \mathrm{t} 2\}$
, members $=\{(\mathrm{t} 1$, "alice"), (t1, "bob"), (t2, "carol"), (t2, "dave") $\}$
this is our approach
, first order modeling (with OMs)
, first order implementation (with RDBs)

operators \& relation properties

cardinality of a set

$$
\begin{aligned}
& \text { \# \{"hello", "there" }\}=2 \\
& \#\}=0
\end{aligned}
$$

union, intersection, difference

$$
\begin{aligned}
& \{1,2\}+\{2,3\}=\{1,2,3\} \\
& \{1,2\} \&\{2,3\}=\{2\} \\
& \{1,2\}-\{2,3\}=\{1\}
\end{aligned}
$$

domain and range

$$
\begin{aligned}
& \operatorname{dom}\left\{(" \mathrm{a} ", 1),\left(" b{ }^{\prime \prime}, 2\right)\right\}=\{" a ", " b "\} \\
& \operatorname{ran}\left\{\left(" a{ }^{\prime \prime}, 1\right),(" b ", 2)\right\}=\{1,2\}
\end{aligned}
$$

image
\{"a"\} . \{("a", 1), ("a", 2)\} = \{1,2\}
$\left\{{ }^{\prime \prime}{ }^{\prime \prime}\right.$ ", "b"\} . $\left\{\left({ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}, 1\right),(" b ", 2)\right\}=\{1,2\}$
transpose
$\sim\{(1,2),(3,4)\}=\{(2,1),(4,3)\}$
join

$$
\left\{\left(" a{ }^{\prime \prime}, 1\right)\right\} \cdot\{(1,2),(1,3),(2,4)\}=\left\{\left(" a{ }^{\prime \prime}, 2\right),\left(" a{ }^{\prime \prime}, 3\right)\right\}
$$

a relation R is symmetric if
(a, b) in R implies (b, a) in R
a relation R is reflexive if
for all $a,(a, a)$ in R
a relation R is transitive if
(a, b) and (b, c) in R implies (a, c) in R
a relation R is an equivalence if
it is symmetric, reflexive and transitive
a relation R is a function if
(a, b) and (a, c) in R implies $\mathrm{b}=\mathrm{c}$
a relation R is injective if
(a, c) and (b, c) in R implies $a=b$ and R is also a function

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

