
softwarestudio
javascript in 3 minutes

Daniel Jackson

1

programming the browser
Java
› 1990: project at Sun to replace C++
› 1994: “Oak”retargeted to the web for “applets”
› Java takes off, first safe language in widespread use

Javascript
› 1995: “Mocha” project at Netscape
› Javascript takes off, included in Microsoft’s IE
› 1996: submitted to Ecma as standard

today
› Java alive and well server-side
› but JS dominates client-side
› making inroads server-side too (eg, node.js)

2

on javascript, from its inventor

JS had to “look like Java” only less so, be Java’s dumb kid brother or
boy-hostage sidekick. Plus, I had to be done in ten days or something
worse than JS would have happened.
—Brendan Eich on Javascript

3

the good parts

In Javascript, there is a beautiful, elegant, highly expressive language
that is buried under a steaming pile of good intentions and blunders.
The best nature of Javascript is so effectively hidden that for many
years the prevailing opinion of Javascript was that it was an unsightly,
incompetent toy. My intention here is to expose the goodness in
Javascript, an outstanding dynamic programming language...

Deep down, Javascript has more in common with Lisp and Scheme
than with Java. It is Lisp in C’s clothing.
—Douglas Crockford in Javascript: The Good Parts

4

syntax

statements like Java
›	 while, for, if, switch, try/catch,

return, break, throw

comments
›	 use //, avoid /**/

semicolons
›	 inserted if omitted (yikes!)

declarations
›	 function scoping with var

functions
›	 are expressions; closures (yippee!)

var MAX = 10;

var line = function (i, x) {

var l = i + " times " + x

+ " is " + (i * x);

return l;

}

var table = function (x) {

for	 (var i = 1; i <= MAX; i += 1) {

 console.log(line(i, x));

 }

}

// display times table for 3

table(3);

5

basic types

primitive types
› strings, numbers, booleans
› operators autoconvert

arrays
› can grow, and have holes

funny values
› undefined: lookup non-existent thing
› null: special return value

equality
› use ===, !==

> 1 + 2

3

> 1 + '2'

"12"

> 1 * 2

2

> 1 * '2'

2

> a = []

[]

> a[2] = 'hello'

"hello"

> a.length

3

> a[1]

undefined

> a[2]

"hello"

> a[3]

undefined

> 1 === 1

true

> 1.0 === 1

true

>'hello' === 'hello'

true

> [] === []

false

6

objects

literals
› o = {prop: val, ...}

properties
› get: x = o.p
› set, add: o.p = e
› delete: delete o.p

prototypes
› lookup along chain

> point = {x: 1, y: 2}

Object

1. x: 1

2. y: 2

3. __proto__: Object

> point.x

1

> point.z

undefined

> point.z = 3

3

> point.z

3

> delete point.z

true

> point.z

undefined

> var Point = function (x, y) {this.x = x; this.y = y;}

undefined

> Point.prototype.magnitude = function () {return

Math.sqrt(this.x * this.x + this.y * this.y);}

function () {return Math.sqrt(this.x * this.x + this.y *

this.y);}

> p = new Point(1,2)

Point

> p.x

1

> p.magnitude

function () {return Math.sqrt(this.x * this.x + this.y *

this.y);}

> p.magnitude()

2.23606797749979
 7

good, bad & awful

good

uniform & simple

first class functions

lexical closures

properties

prototypes

bad, can work around

default variable scope

==, NaN

awful, stuck with these

no access control

no immutable lists

no standard libraries

no packaging

new & this

8

recommended reading

Douglas Crockford. JavaScript: The Good Parts.

Short, entertaining, well explained. In good taste.

Candid about bad and awful parts too.

Sometimes need more explanation (eg, constructors)

Stoyan Stefanov. JavaScript Patterns.

Also fairly short, and well explained.

Sophisticated collection of useful patterns.

9

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

