
softwarestudio
thoughts on software process

Daniel Jackson

1

process orderings

2

local vs global process

global ordering of phases local ordering of phases
3

risks

4

risk-driven development

Risk = Prob(failure) x Cost(failure)

a strategy
› list failures & determine their risks
› devise a strategy to reduce highest risks

sample failures: how would you mitigate?
› performance is unacceptable
› product is unusable because its too complex
› customer changes mind about what product does
› developer solves the wrong problem
› product fails in catastrophic way
› competitor beats you into marketplace
› product has reputation for bugs
› development runs out of time and money
› developers rely on platform that turns out bad

5

doing design

6

small design upfront

Agilistas deride “Big Design Upfront” (BDUF)

what about Small Design Upfront?
› what isn’t worth designing?
› can you recover from a bad design?
› what’s the cost of design?

SDUF strategies
› precise but lightweight notations
› separate concerns & focus on risks
› avoid implementation bias

7

be like a beaver!

This image is in the public domain.

small nibbles, big outcome

8

intuitive vs data-driven design

Google Bing
Courtesy of Joshua Porter. Used with permission.

When a company is filled with engineers, it turns to engineering to
solve problems. Reduce each decision to a simple logic problem.
Remove all subjectivity and just look at the data. Data in your favor?
OK, launch it. Data shows negative effects? Back to the drawing board.
And that data eventually becomes a crutch for every decision,
paralyzing the company and preventing it from making any daring
design decisions. Doug Bowman

9

Courtesy of Joshua Porter. Used with permission.

from Joshua Porter, bokardo.com
10

http:bokardo.com

radical design

11

a TDD guru on sudoku

from http://xprogramming.com/
articles/oksudoku/

© Ron Jeffries. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

12

http://ocw.mit.edu/fairuse
http://xprogramming.com/articles/oksudoku/
http://xprogramming.com/articles/oksudoku/

still going after five long blog posts...

© Ron Jeffries. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

Peter Norvig solves in one:

see http://norvig.com/sudoku.html

© Peter Norvig. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

13

http://ocw.mit.edu/fairuse
http://ocw.mit.edu/fairuse
http://norvig.com/sudoku.html

lessons?

risk
› Ron Jeffries focuses on class design
› but real risk is algorithmic?

Norvig’s advantage
› he knows AI: applies standard solution

Walter Vincenti’s dichotomy
› normal design: tweaking parameters

› radical design: never done this before

14

co-evolution

15

co-evolution

problem space

solution space

16

UML

Image of UML diagrams removed due to copyright restrictions.
Reference: Illustration by Kishorekumar 62 on Wikimedia Commons.

17

http://commons.wikimedia.org/wiki/File:UML_Diagrams.jpg

co-evolution in UML

18

co-evolution in UML

heavy documentation

complex notations

tool support deferred

19

the cost of complex tools

20

800

700

600

500

400

300

200

100

0

750

650

550

450

350

250

150

50

#
 P

ag
es

 in
 D

ef
in

it
io

n

Al
go

l-6
0
19

60

Al
go

l-6
8
19

75

C
19

78

SA
/S

D 1
97

9

CL
U

19
81

JS
D 1

98
3

C+
+ 1

98
5

Sc
he

m
e 1

98
6

SM
L 1

99
0

OMT
19

91

Z
19

92

Sy
nt

ro
py

 1
99

4

Fu
sio

n
19

94

Ja
va

 1
99

6

UM
L 1

99
9

Pa
sc

al
19

74

Image by MIT OpenCourseWare.

agile

© the above authors. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

21

http://ocw.mit.edu/fairuse

co-evolution in agile

22

co-evolution in agile

baby out with bathwater
today’s orthodoxy?

23

unused

24

descartes’s four rules

The first was never to accept anything for true which I did not clearly know to be such; that is to say,
carefully to avoid precipitancy and prejudice, and to comprise nothing more in my judgment than what
was presented to my mind so clearly and distinctly as to exclude all ground of doubt.

The second, to divide each of the difficulties under examination into as many parts as possible, and as
might be necessary for its adequate solution.

The third, to conduct my thoughts in such order that, by commencing with objects the simplest and
easiest to know, I might ascend by little and little, and, as it were, step by step, to the knowledge of the
more complex; assigning in thought a certain order even to those objects which in their own nature do
not stand in a relation of antecedence and sequence.

And the last, in every case to make enumerations so complete, and reviews so general, that I might be
assured that nothing was omitted.

25

leibniz on descartes’s second rule

“This rule of Descartes is of little use as long as the art of dividing
remains unexplained... By dividing his problem into unsuitable parts,
the inexperienced problem-solver may increase his difficulty.”
—Leibniz, Philosophical Writings, ed. C.I. Gerhardt; Vol. 4, p.331, 1857-1890

26

norvig on sudoku

Screenshot of Peter Norvig's webpage removed due to copyright restrictions.

27

http://norvig.com/sudoku.html

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

